Banner Portal
Integração de técnicas de inteligência artificial para modelagem probabilística do estudante em ambientes virtuais de aprendizagem
PDF

Palavras-chave

Ontologias
IA na educação
Redes bayesianas
Modelo de estudante

Como Citar

FERREIRA, Hiran N. M.; ARAÚJO, Rafael; DORÇA, Fabiano; CATTELAN, Renan. Integração de técnicas de inteligência artificial para modelagem probabilística do estudante em ambientes virtuais de aprendizagem. Tecnologias, Sociedade e Conhecimento, Campinas, SP, v. 10, n. 2, p. 38–67, 2023. DOI: 10.20396/tsc.v10i2.18365. Disponível em: https://econtents.bc.unicamp.br/inpec/index.php/tsc/article/view/18365. Acesso em: 5 nov. 2024.

Resumo

Práticas pedagógicas apoiadas por recursos computacionais, especialmente aquelas que incorporam técnicas de Inteligência Artificial, podem auxiliar na predição do nível de conhecimento de estudantes em ambientes virtuais de aprendizagem. Nesse contexto, este artigo apresenta uma abordagem híbrida, baseada em Redes Bayesianas e ontologias, para tratar informações sobre o nível de conhecimento e comportamento dos estudantes e, assim, medir seu desempenho. Foi criado um modelo de estudante dinâmico, probabilístico, independente de domínio, extensível e reutilizável. Também foi apresentada uma extensão do modelo para permitir a visualização das capacidades e limitações dos estudantes. Como estudo de caso, o modelo proposto foi integrado a uma plataforma educacional, servindo de base para validação e experimentação da abordagem.

https://doi.org/10.20396/tsc.v10i2.18365
PDF

Referências

AEIAD, E.; MEZIANE, F. An adaptable and personalised e-learning system applied to computer science programmes design. Education and Information Technologies, v. 24, n. 2, p. 1485–1509, 2019.

ALMARABEH, H. Analysis of students’ performance by using different data mining classifiers. International Journal of Modern Education and Computer Science, v. 8, p. 9-15, 2017.

BELLARHMOUCH, Y.; JEGHAL, A.; TAIRI, H.; BENJELLOUN, N. A proposed architectural learner model for a personalized learning environment. Education and Information Technologies, v. 28, p. 4243–4263, 2023.

BENHAMDI, S.; BABOURI, A.; CHIKY, R. Personalized recommender system for e-learning environment. Education and Information Technologies, v. 22, p. 1455–1477, 2017.

CHEN, Y.; WUILLEMIN, P. H.; LABAT, J. M. Bayesian Student Modeling Improved by Diagnostic Items. In: INTELLIGENT TUTORING SYSTEMS, 2014, Honolulu, HI. Proceedings… Honolulu, HI: 2014. vol. 8474. p. 144-149. Theme: Lecture Notes in Computer Science. Disponível em: https://doi.org/10.1007/978-3-319-07221-0_17. Acesso em: 30 ago. 2023.

CHRYSAFIADI, K.; VIRVOU, M.; TSIHRINTZIS, G.; HATZILYGEROUDIS, I. An Adaptive Learning Environment for Programming Based on Fuzzy Logic and Machine Learning. International Journal on Artificial Intelligence Tools, v. 32, n. 05, 2023.

CLEMENTE, J.; RAMÍREZ, J.; DE ANTONIO, A. A proposal for student modeling based on ontologies and diagnosis rules. Expert Systems with Applications, v. 38, n. 7, p. 8066– 8078, 2011.

DAVIS, J. A. Elementary Survey Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1971.

DOLOG, P.; NEJDL, W. Semantic Web Technologies for the Adaptive Web. In: BRUSILOVSKY, P.; KOBSA, A.; NEJDL, W. (eds.). The Adaptive Web. Berlin, Heidelberg: Springer. v. 4321, p. 697–719, 2007. Theme: Lecture Notes in Computer Science. Disponível em: https://doi.org/10.1007/978-3-540-72079-9_23. Acesso em: 30 ago. 2023.

EL AISSAOUI, O.; EL ALAMI EL MADANI, Y.; OUGHDIR, L.; EL ALLIOUI, Y. A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, v. 24, p. 1943–1959, 2019.

FELDER, R. M.; SILVERMAN, L. K.; et al. Learning and teaching styles in engineering education. Engineering Education, v. 78, n. 7, p. 674–681, 1988.

FERREIRA, H. N. M.; ARAÚJO, R. D.; DE AMO, S.; CATTELAN, R. G. Classroom Experience: A Platform for Multimedia Capture and Access in Instrumented Educational Environments. In: BRAZILIAN SYMPOSIUM ON COLLABORATIVE SYSTEMS, São Paulo: 2012. Proceedings… p. 59–64. Disponível em: https://doi.org/10.1109/SBSC.2012.20. Acesso em: 30 ago. 2023.

GRUBIŠIĆ A.; STANKOV, S.; PERAIĆ. Ontology based approach to Bayesian student model design. Expert Systems with Applications, v. 40, n. 13, p. 5363–5371, 2013. DOI: https://doi.org/10.1016/j.eswa.2013.03.041. Acesso em: 30 ago. 2023.

GUERRA, J.; HOSSEINI, R.; SOMYUREK, S.; BRUSILOVSKY, P. An intelligent interface for learning content: Combining an open learner model and social comparison to support self-regulated learning and engagement. In: INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2016, Sonoma. Proceedings… Sonoma, CA: 2016. p. 152–163. Disponível em: https://doi.org/10.1145/2856767.2856784. Acesso em: 30 ago. 2023.

HAWKINS, W. J.; HEFFERNAN, N. T.; BAKER, R. S. Learning bayesian knowledge tracing parameters with a knowledge heuristic and empirical probabilities. In: INTELLIGENT TUTORING SYSTEMS, 2014. Proceedings… Honolulu, HI: 2014. Lecture Notes in Computer Science, vol. 8474. p. 150-155. Theme: Lecture Notes in Computer Science. Disponível em: https://doi.org/10.1007/978-3-319-07221-0_18. Acesso em: 30 ago. 2023.

HSIAO, I.-H.; BAKALOV, F.; BRUSILOVSKY, P.; KÖNIG-RIES, B. Progressor: social navigation support through open social student modeling. New Review of Hypermedia and Multimedia, v. 19, n. 2, p. 112–131, 2013.

HUSSAIN, M.; ZHU, W.; ZHANG, W.; ABIDI, S. M. R.; ALI, S. Using machine learning to predict student difficulties from learning session data. Artificial Intelligence Review, v. 52, p. 381–407, 2019.

KHANAL, S. S.; PRASAD, P.; ALSADOON, A.; MAAG, A. A systematic review: machine learning based recommendation systems for e-learning. Education and Information Technologies, v. 25, p. 2635–2664, 2020.

LAKHO, S.; JALBANI, A.; MEMON, I.; SOOMRO, S.; CHANDIO, A. Development of an Integrated Blended Learning Model and Its Performance Prediction on Students’ Learning Using Bayesian Network. Journal of Intelligent and Fuzzy Systems, v. 43, n. 2, p. 2015–2023, 2022.

MAHNANE, L.; LASKRI, M. T. An adaptive hypermedia system integrating thinking style (ahs-ts): Model and experiment. International Journal of Hybrid Information Technology, v. 5, n. 1, p. 11–28, 2012.

MILLÁN, E.; LOBODA, T.; PÉREZ-DE-LA CRUZ, J. L. Bayesian networks for student model engineering. Computers & Education, v. 55, n. 4, p. 1663–1683, 2010.

MINOVIĆ, M.; MILOVANOVIĆ, M.; ŠOŠEVIĆ, U.; GONZÁLEZ, M. Á. C. Visualisation of student learning model in serious games. Computers in Human Behavior, v. 47, p. 98–107, 2015.

PEARL, J. Bayesian networks: A model of self-activated memory for evidential reasoning. In: CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1985, Irvine. Proceedings…. Irvine: 1985. p. 329–334. Disponível em: https://ftp.cs.ucla.edu/pub/stat_ser/r43-1985.pdf. Acesso em: 30 ago. 2023.

PEARL, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1988.

REZENDE, P. A.; PEREIRA, C.; CAMPOS, F.; DAVID, J.; BRAGA, R. Personna: proposta de ontologia de contexto e perfil de alunos para recomendação de objetos de aprendizagem. Revista Brasileira de Informática na Educação, v. 23, n. 01, p. 70-84, 2015.

SHUTE, V. J.; D’MELLO, S.; BAKER, R.; CHO, K.; BOSCH, N.; OCUMPAUGH, J.; VENTURA, M.; ALMEDA, V. Modeling how incoming knowledge, persistence, affective states, and in-game progress influence student learning from an educational game. Computers & Education, v. 86, p. 224 – 235, 2015.

TARUS, J.; NIU, Z.; MUSTAFA, G. Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial intelligence review, v. 50, p. 21–48, 2018.

TING, C.-Y.; PHON-AMNUAISUK, S. Properties of bayesian student model for inqpro. Applied Intelligence, v. 36, n. 2, p. 391–406, 2012.

TORABI, R.; MORADI, P.; KHANTAIMOORI, A. R. Predict student scores using bayesian networks. Procedia - Social and Behavioral Sciences, v. 46, p. 4476-4480, 2012.

TRIFA, A.; HEDHILI, A.; CHAARI, W. L. Knowledge tracing with an intelligent agent, in an e-learning platform. Education and Information Technologies, v. 24, p. 711–741, 2019.

VERBERT, K.; MANOUSELIS, N.; OCHOA, X.; WOLPERS, M.; DRACHSLER, H.; BOSNIC, I.; DUVAL, E. Context-aware recommender systems for learning: A survey and future challenges. IEEE Transactions on Learning Technologies, v. 5, n. 4, p. 318–335, 2012.

WAN, S.; NIU, Z. An e-learning recommendation approach based on the self-organization of learning resource. Knowledge-Based Systems, v. 160, p. 71–87, 2018.

WANG, W.; YU, H.; MIAO, C. Deep model for dropout prediction in MOOCs. In: INTERNATIONAL CONFERENCE ON CROWD SCIENCE AND ENGINEERING, 2017, Beijing. Proceedings… Beijing, China: 2017. p. 26–32. Disponível em: https://doi.org/10.1145/3126973.3126990. Acesso em: 30 ago. 2023.

WAZLAWICK, R. Metodologia de Pesquisa em Ciência da Computação. Barueri, SP: GEN LTC, 2020.

WEISER, M. Some computer science issues in ubiquitous computing. Communications of the ACM, v. 36, n. 7, p. 75–84, 1993.

XIN, W.; SHIYUN, S.; DAN, W.; LIANG, Z. Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology. Frontiers in Psychology, v. 12:767837, 2021.

YOU, J.; WANG, Y.; PAL, A.; EKSOMBATCHAI, P.; ROSENBURG, C.; LESKOVEC, J. Hierarchical temporal convolutional networks for dynamic recommender systems. In: THE WORLD WIDE WEB CONFERENCE, 2019, San Francisco. Proceedings… San Francisco, CA: 2019. p. 2236–2246. Disponível em: https://doi.org/10.1145/3308558.3313747. Acesso em: 30 ago. 2023.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Tecnologias, Sociedade e Conhecimento

Downloads

Não há dados estatísticos.