Resumo
Desde a Revolução Industrial houve transformações profundas nas condições de trabalho. Em cerca de 200 anos, foram dados saltos do ponto de vista tecnológico, econômico e social. O século XXI trouxe descobertas que estão desencadeando alterações bastante significativas, com forte impacto sobre os trabalhadores. Este estudo verificou a expectativa de brasileiros e portugueses sobre os desafios das novas tecnologias. Os resultados mostram que boa parte das pessoas ainda desconhece ou conhece pouco as implicações das inovações digitais, mas assumem uma postura apreensiva em relação ao futuro, demonstrando incertezas acerca dos benefícios e até certa “fobia digital”. Há um consenso de que muitas mudanças irão ocorrer por causa da Indústria 4.0 e será difícil encontrar bons empregos. Além disso, fica evidente que governos, empresas, escolas e indivíduos têm grande reponsabilidade para preparar a força de trabalho para enfrentar os desafios da quarta revolução industrial.
Referências
Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7–72. https://www.aeaweb.org/articles?id=10.1257/0022051026976
Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: implications for employment and earnings. In D. Card & O. Ashenfelter (Eds.), Handbook of labor economics (Vol. 4, pp. 1043–1171). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5
Albuquerque, P. H., Saavedra, C. A. P. B., de Morais, R. L., Alves, P. F., & Peng, Y. (2019). Na era das máquinas, o emprego é de quem? Estimação da probabilidade de automação de ocupações no Brasil [Texto para Discussão, No. 2457], Instituto de Pesquisa Econômica Aplicada. https://www.ipea.gov.br/portal/images/stories/PDFs/TDs/190329_td_2457.pdf
Amorim, J. E. B. de. (2017). A “Indústria 4.0” e a sustentabilidade do modelo de financiamento do regime geral da segurança social. Cadernos de Dereito Actual, (5), 243–254. http://www.cadernosdedereitoactual.es/ojs/index.php/cadernos/article/view/132
Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3
Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: an empirical exploration. The Quarterly Journal of Economics, 118(4), 1279–1333. https://doi.org/10.1162/003355303322552801
Blit, J. (2020). Automation and reallocation: will COVID-19 usher in the future of work? Canadian Public Policy, 46(S2), S192–S202. https://doi.org/10.3138/cpp.2020-065
Briel, S., Osikominu, A., Pfeifer, G., Reutter, M., & Satlukal, S. (2020). Overconfidence and gender differences in wage expectations. [SSRN Scholarly Paper ID 3661437], Social Science Research Network. https://papers.ssrn.com/abstract=3661437
Chernoff, A., & Warman, C. (2020). COVID-19 and implications for automation. [NBER Working Series, No. w27249], National Bureau of Economic Research, Cambridge, MA. https://doi.org/10.3386/w27249
Confederanção Nacional da Indústria (CNI) (2016). Desafios para Indústria 4.0 no Brasil. https://www.portaldaindustria.com.br/publicacoes/2016/8/desafios-para-industria-40-no-brasil/
Dekker, F., Salomons, A., & van der Waal, J. (2017). Fear of robots at work: the role of economic self-interest. Socio-Economic Review, 15(3), 539–562. https://doi.org/10.1093/ser/mwx005
Ding, L., & Molina, J. S. (2020). “Forced automation” by COVID-19? Early trends from current population survey data. [Community Affairs Discussion Paper 88713], Federal Reserve Bank of Philadelphia. https://www.philadelphiafed.org/community-development/workforce-and-economic-development/forced-automation-by-covid-19
Dodel, M., & Mesch, G. S. (2020). Perceptions about the impact of automation in the workplace. Information, Communication & Society, 23(5), 665–680. https://doi.org/10.1080/1369118X.2020.1716043
Duarte, J. B. (Coord.) (2019). Automação e futuro do emprego em Portugal: O imperativo da requalificação. Nova School of Business and Economics; Confederação Empresarial de Portugal (CIP). https://cip.org.pt/wp-content/uploads/2019/10/Relat%C3%B3rio-FoW_NSBE-CIP.pdf
Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerisation? Technological Forecasting and Social Change, (114), 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
Hainguerlot, M., Vergnaud, J.-C., & de Gardelle, V. (2018). Metacognitive ability predicts learning cue-stimulus associations in the absence of external feedback. Scientific Reports, 8, 5602. https://doi.org/10.1038/s41598-018-23936-9
Heidhues, P., Kőszegi, B., & Strack, P. (2018). Unrealistic expectations and misguided learning. Econometrica, 86(4), 1159–1214. https://doi.org/10.3982/ECTA14084
Hobsbawm, E. (2000). Da revolução industrial inglesa ao imperialismo (5a ed.). Forense Universitária.
Ivanov, S., Kuyumdzhiev, M., & Webster, C. (2020, April 18). Automation fears: drivers and solutions. [SocArXiv Papers]. https://doi.org/10.31235/osf.io/jze3u
Lima, Y., Strauch, J., Esteves, M. G., & Souza, J. M. de (2021). Exploring the future impact of automation in Brazil. Employee Relations, 43(15), 1052–1066. https://doi.org/10.1108/ER-08-2020-0364
Lima, Y., Strauch, J., Esteves, M. G., Souza, J. M. de, Chaves, M., & Gomes, D. (2019). O futuro do emprego no Brasil: estimando o impacto da automação. Laboratório do Futuro – UFRJ. http://labfuturo.cos.ufrj.br/wp-content/uploads/2019/08/O-impacto-da-automa%C3%A7%C3%A3o-no-Brasil.pdf
Manzato, A. J., & Santos, A. B. (2012). A elaboração de questionários na pesquisa quantitativa. [Material didático], Departamento de Ciência de Computação e Estatística, IBILCE, UNESP. http://www.inf.ufsc.br/~vera.carmo/Ensino_2012_1/ELABORACAO_QUESTIONARIOS_PESQUISA_QUANTITATIVA.pdf
Marray, K., Krishna, N., & Tang, J. (2020). How do expectations affect learning about fundamentals? Some experimental evidence. [SSRN Scholarly Paper ID 3542787], Social Science Research Network. https://doi.org/10.2139/ssrn.3542787
McClure, P. K. (2018). “You’re fired”, says the robot: the rise of automation in the workplace, technophobes, and fears of unemployment. Social Science Computer Review, 36(2), 139–156. https://doi.org/10.1177/0894439317698637
McKinsey Global Institute (MGI) (2017). A future that works: Automation, employment, and productivity. Edited by J. Manyika, M. Chui, M. Miremadi, J. Bughin et al. https://www.mckinsey.com/~/media/mckinsey/featured%20insights/Digital%20Disruption/Harnessing%20automation%20for%20a%20future%20that%20works/MGI-A-future-that-works-Full-report.ashx
McKinsey Global Institute (MGI) (2020, September). What 800 executives envision for the pandemic workforce. https://www.mckinsey.com/featured-insights/future-of-work/what-800-executives-envision-for-the-postpandemic-workforce
Morais, C. (2005). Escalas de medida, estatística descritiva e inferência estatística. [ESE Working Papers], Escola Superior de Educação, Bragança, Portugal. https://bibliotecadigital.ipb.pt/handle/10198/7325
Morikawa, M. (2017). Who are afraid of losing their jobs to artificial intelligence and robots? Evidence from a survey. [GLO Discussion Paper, No. 71], Global Labour Organization, Maastricht. https://www.econstor.eu/bitstream/10419/158005/1/GLO_DP_0071.pdf
Oliveira, E. M. (2004). Transformações no mundo do trabalho, da revolução industrial aos nossos dias. Caminhos de Geografia, 5(11), 84–96. http://www.seer.ufu.br/index.php/caminhosdegeografia/article/view/15327
Wike, R., & Stokes, B. (2018, September). In advanced and emerging economies alike, worries about job automation. Pew Research Center. https://www.pewresearch.org/global/wp-content/uploads/sites/2/2018/09/Pew-Research-Center_In-Advanced-and-Emerging-Economies-Alike-Worries-about-Job-Automation_2018-09-13.pdf
World Economic Forum (WEF) (2020). Future of Jobs Report 2020. http://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 Alexandre Junqueira, Yuri Lima, Jano Moreira de Souza