Polímeros de fontes renováveis: aplicações em saúde e meio ambiente

Autores

Lucia Helena Innocentini Mei
Universidade Estadual de Campinas
https://orcid.org/0000-0002-6487-3500

Palavras-chave:

Polímeros, Polímeros na medicina, Polímeros - Aspectos ambientais

Sinopse

O objetivo deste livro é levar ao público acadêmico e não acadêmico, o devido conhecimento sobre Biopolímeros e suas aplicações nas áreas da Saúde e Ambiental. Conceitos sobre polímeros biobased e biodegradáveis tem sido utilizados sem o conhecimento necessário para discernir sobre quando e porque utilizá-los. Na mesma linha, muito se fala em Biomassa mas pouco se divulga além das fronteiras acadêmicas, o potencial que ela oferece para se obter matérias-primas renováveis que serão utilizadas na produção de bens de commodities e de produtos de alta tecnologia para utilização nas áreas Médica, Farmacêutica, Biomédica, Odontológica, Biológicas, Engenharias (Materiais, Química, Alimentos, Ambiental, Civil, Agrícola, etc.).

Downloads

Não há dados estatísticos.

Biografia do Autor

Lucia Helena Innocentini Mei , Universidade Estadual de Campinas

Doutora em Química Biológica pela Universidade Estadual de Campinas. Professora Titular de Ciências polímeros desde 2006 na Faculdade de Engenharia Química / Universidade Estadual de Campinas.

Referências

ABDEL-RAHMAN, M.A.; TASHIRO, Y. & SONOMOTO, K. “Recent advances in lactic acid production by microbial fermentation processes”. Biotechnology Advances, vol. 31, 2013, pp. 877-902.

AMASS, W.; AMASS, A. & TIGHE, B. “A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies”. Polymer International, vol. 47, 1998, pp. 89-144.

ARAYA-CLOUTIER, C.; ROJAS-GARBANZO, C. & VELAZQUES-CARILLO, C. “Effect of Initial Sugar Concentration on the Production of L(+) Lactic Acid by Simultaneous Enzymatic Hydrolysis and Fermentation of an Agro-Industrial Waste Product of Pineapple (Ananas comosus) Using Lactobacillus casei Subspecies rhamnosus”. Int. J. Biotechnol., vol. 506, 2012, pp. 91-100.

BABU, R.P.; O’CONNOR, K. & SEERAM, R. “Current progress on biobased polymers and their future trends”. Progr. Biomater., vol. 2, 2013, pp. 1-16.

BAYRAM, C. et al. “Preparation and characterization of triamcinolone acetonide-loaded poly(3-hydroxybutirate-co-3-hydroxyhexanoate) (PHBHx) microspheres”. J. Bioactive and Compatible Polymer, vol. 23, 2008, pp. 334-347.

BURGOS, N.; MARTINO, V.P. & JIMÉNEZ, A. “Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid”. Polym. Degrad. Stab., vol. 98, 2013, pp. 651-658.

CHEE, W.K. et al. “Impact toughness and ductility enhancement of biodegradable poly(lactic acid)/poly(-caprolactone) blends via addition of glycidyl methacrylate”. Adv. Mater. Sci. Eng., vol. 2013, 2013, 8 p.

CHEN, G.Q. & PATEL, M.K. “Plastics derived from biological sources: present and future: a technical and environmental review”. Chem. Rev., vol. 112, 2012, pp. 2082-2099.

CHEN, G.Q. & QIONG, W. “The application of polyhydroxyalkanoates as tissue engineering materials”. Biomaterials, vol. 26, 2005, pp. 6565-6578.

CHEN, Q.Z. et al. “Biomaterials in cardiac tissue engineering: ten years of research survey”. Materials Sci. Eng.: Reports, vol. 59, 2008, pp. 1-37.

CHIENG, B.W. et al. “Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets”. Polymers (Basel), vol. 6, 2013, pp. 93-104.

CLARINVAL, A.M. & HALLEUX, J. “Classification of biodegradable polymers. Part 1”. In: SMITH, R., Ed. Biodegradable polymers for industrial applications, 1. Ed., Boca Raton, CRC Press, Florida, USA, 2005, p. 552.

DE ROO, G. Et al. “Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonas”. Biotechnol. Bioeng., vol. 77, 2002, pp. 717-722.

DOI, Y. Microbial Polyesters, VCH Publishers, New York, USA, 1990, 156 pp.

FEI, T. Et al. “Effective Recovery of Poly-β-Hydroxybutyrate (PHB) Biopolymer from Cupriavidus necator Using a Novel and Environmentally Friendly Solvent System”. Biotechnology Progress, vol. 32, 2016, pp. 678-685.

FREIER, T. Et al. “In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate)”. Biomaterials, vol. 23, 2002, pp. 2649-2657.

JACQUEL, N. et al. “Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts”. J. Polym. Sci. Part A : Polym. Chem., vol. 49, 2011, pp. 5301-5312.

JAMSHIDIAN, M. et al. “Poly-lactic acid: production, applications, nanocomposites, and release studies”. Comprehensive Rev. Food Sci. Food Safety, vol. 9, 2010, pp. 552-571.

JIANG, G. et al. “Carbon sources for polyhydroxyalkanoates and an integrated biorefinery”. Int. J. Mol. Sci., vol. 17, 2016, p. 1157.

KATHIRASER, Y. et al. “Chemical Characterization of 34etero-chain length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration”. J. Chem. Tech. Biotech., vol. 82, 2007, pp. 847-855.

KUNZE, C.; EDGAR, B.H. & ANDROSCH, R. “In vitro and in vivo studies on blends of isotactic and atactic poly(3-hydroxybutyrate) for development of a dura substitute material”. Biomaterials, vol. 27, 2006, pp. 192-201.

LACKNER, M. “Bioplastics”. Kirk-Othmer Encyclopedia of Chemical Technology, 2015, pp. 1-41.

LANGER, R. & TIRRELL, D.A. “Designing materials for biology and medicine”. Nature,vol. 428(6982), 2004, pp. 487-492.

LEBARBÉ, T. et al. “Fatty acid-based thermoplastic poly(ester-amide) as toughening and crystallization improver of poly(L-lactide)”. Eur. Polym. J., vol. 65, 2015, pp. 276-285.

LIU, L. et al. “Biodegradability of PBS composite reinforced with jute”. Polym. Degrad. Stab., vol. 94, 2009b, pp. 90-94.

LIU, L. Et al. “Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre”. Composites Part A: Appl. Sci. Manufacturing, vol. 40, 2009a, p. 669-674.

LIU, M.; ZHANG, Y. & ZHOU, C. “Nanocomposites of halloysite and polylactide”. Appl. Clay Sci., vol. 75-76, 2013, pp. 52-59.

LJUNGBERG, N. & WESSLÉN, B. “Tributyl citrate oligomers as plasticizers for poly (lactic acid): 38eteroa-mechanical film properties and aging”. Polymer (Guildf), vol. 44, 2003, pp. 7679-7688.

MARTIN, O. & AVÉROUS, L. “Poly(lactic acid): plasticization and properties of biodegradable multiphase systems”. Polymer (Guildf), vol. 42, 2001, pp. 6209-6219.

MARTINEZ, F.A.C. et al. “Lactic acid properties, applications and production: A review”. Trends Food Sci. Technol., vol. 30, 2013, pp. 70-83.

McCHALICHER, C.W. & SRIENC, F. “Investigating the structure-property relationship of bacterial PHA block copolymers”. J. Biotechnology, vol. 132, 2007, pp. 296-302.

MOCHIZUKI, M. Properties and Application of Aliphatic Polyester Products. Biopolymer, Part 4, Polyesters. New York, Wiley & Sons, River Street, Hoboken, 2005.

MOHANTY, A.K.; MISRA, M. & HINRICHSEN, G. “Biofibres, biodegradable polymers and biocomposites: An overview”. Macromol. Mater. Eng., vol. 276-277, 2000, pp. 1-24.

MOHAPATRA, A.K.; MOHANTY, S. & NAYAK, S.K. “Effect of PEG on PLA/PEG blend and its nanocomposites: a study of 38eteroa-mechanical and morphological characterization”. Polym. Compos., vol. 35, 2014, pp. 283-293.

PANESAR, P.S. et al. “Production of L(+) Lactic Acid using Lactobacillus casei from Whey”. Brazilian Archives of Biology and Technology, vol. 53, 2010, pp. 219-226.

PEREGO, G. & CELLA, G.D. “Mechanical properties”. In: AURAS R.; LIM L.T.; SELKE, S.E.M. & TSUJI, H., Eds. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing and Applications, Wiley, New Jersey, USA, 2010, pp. 141-154.

PHILIP, S.; KESHAVARZ, T. & ROY, I. “Polyhydroxyalkanoates: biodegradable polymers with a range of applications”. J. Chemical Tech. Biotech., vol. 82, 2007, pp. 233-247.

PUCHALSKI, M. et al. “Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions”. Polymers, vol. 10, 2018, pp. 1-12.

REIS, K.C. et al. “Characterization of polyhydroxybuty-hydroxyvalerate (PHB-HV) maize starch blend films”. J. Food Eng., vol. 89, 2008, pp. 361-369.

RUTH, K. et al. “Efficient production of I-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules, vol. 8, 2007, pp. 279-286.

SAVENKOVA, L. et al. “Mechanical properties and biodegradation characteristics of PHB-based films”. Process Biochem., vol. 35, 2000, pp. 537-579.

SODIAN, R. et al. “Early in vivo experience with tissue engineered trileaflet heart valves”. Circulation, vol. 102, 2000, pp. 22-29.

SRITHEP, Y.; NEALEY, P. & TURNG, L.-S. “Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid)”. Polym. Eng. Sci., vol. 53, 2013, pp. 580-588.

STEINBUCHEL, A. & VALENTIN, H.E. “Diversity of bacterial polyhydroxyalkanoic acids”. FEMS Microbiol. Lett. Vol. 128, 1995, pp. 219-228.

SUBRAMANIAN, M.R.; TALLURI, S. & CHRISTOPHER, L.P. “Production of lactic acid using a new homofermentative Enterococcus faecalis isolate”. Microb. Technol., vol. 8, 2015, pp. 221-229.

TASKILA, S. & OJAMO, H. “The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria”. In: KONGO, M., Ed. Lactic Acid Bacteria – R and D – for Food, health and Livestock Purposes. Oulu, Finland, InTech, 2013, pp. 615-632.

TODO, M. & TAKAYAMA, T. “Fracture Mechanisms of Biodegradable PLA and PLA/PCL Blends”. In: PIGNATELLO, R., Ed. Biomaterials – Physics and Chemistry, InTech, 2011, pp. 375-394.

TURESIN, F.; GURSEL, I. & HASIRCI, V. “Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release”. J. Biomater. Sci. Polym., vol. 12, 2001, pp. 195-207.

VALAPPIL, S.P. et al. “Biomedical applications of polydroxyalkanoates, an overview of animal testing and in vivo responses”. Expert Rev. Med. Devices, vol. 3, 2006, pp. 853-868.

VINK, E.T.H. et al. “The eco-profiles for current and near-future NatureWorks polylactide (PLA) production”. Industrial Biotechnology, vol. 3, 2007, pp. 58-81.

VOLOVA, T. et al. “Results of biomedical investigations of PHB and PHB/PHV fibers”. Biochem. Eng. J., vol. 16, 2003, pp. 125-133.

VROMAN, I. & TIGHZERT, L. “Biodegradable Polymers”. Materials, vol. 2, 2009, pp. 307-344.

WALLE, G.A.M. et al. “Properties, modifications and applications of biopolyesters”. Adv. Biochem. Eng. Biotechnol., vol. 71, 2001, pp. 264-291.

WANG, J.; ZHAI, W. & ZHENG, W.-G. “Poly(ethylene glycol) grafted starch introducing a novel interphase in poly(lactic acid)/poly(ethylene glycol)/starch ternary composites”. J. Polym. Environ., vol. 20, 2012, pp. 528-539.

WANG, R. et al. “Morphology, mechanical properties, and durability of poly(lactic acid) plasticized with di(isononyl) cyclohexane-1,2-dicarboxylate. Polym. Eng. Sci., vol. 49, 2009, pp. 2414-2420.

WANG, Z. et al. “Novel transdermal drug delivery system with polyhydroxyalkanoate and starburst polyamidoamine dendrimer”. J. Biosci. Bioeng., vol. 95, 2003, pp. 541-543.

WILLIAMS, S.F. et al. “PHA applications: addressing the price performance Issue: I. Tissue engineering”. Int. J. Biol. Macromolecules, vol. 25, 1999, pp. 111-121.

YANG, Y. et al. “Study on chitosan and PHBHHx used as nerve regeneration conduit material”. J. Biomedical Eng., vol. 19, 2002, pp. 25-29.

YING, T.H. et al. “Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bio absorption and tissue response”. Biomaterials, vol. 29, 2008, pp. 1307-1317.

ZHAO, K. et al. “Production of D-(-)-3-hydroxyalkanoic acid by recombinant Escherichia coli”. FEMS Microbiol. Lett., vol. 218, 2003, pp. 59-64.

Downloads

Publicado

julho 21, 2020

Categorias

Licença

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Detalhes sobre essa publicação

ISBN-13 (15)

978-65-87175-01-0

Date of first publication (11)

2020

Dimensões físicas

14cm x 21cm x 5cm