Banner Portal
O déficit hídrico modifica a descarboxilação nas células da bainha do feixe vascular e reduz a atividade carboxilase da Rubisco em cana-de-açúcar
e024003

Palavras-chave

Saccharum spp.
fotossíntese C4
mecanismo de descarboxilação
déficit hídrico.

Como Citar

FÁVERO SÃO PEDRO MACHADO, Daniela; MAGALHÃES ERISMANN, Norma; EUGÊNIA ÁLAMO GABRINE BOZA, Yolanda; MARRY ARAÚJO GONDIM-TOMAZ, Rose; CARUSO MACHADO, Eduardo; VASCONCELOS RIBEIRO, Rafael. O déficit hídrico modifica a descarboxilação nas células da bainha do feixe vascular e reduz a atividade carboxilase da Rubisco em cana-de-açúcar. BioEns@ios, Campinas, SP, v. 2, n. 00, p. e024003, 2024. DOI: 10.20396/bioe.v2i00.18641. Disponível em: https://econtents.bc.unicamp.br/inpec/index.php/bioe/article/view/18641. Acesso em: 22 jul. 2024.

Resumo

Neste trabalho testou-se a hipótese de que o estresse hídrico reduz a fotossíntese da cana-de-açúcar impondo limitações de origem estomática e mesofílica e modificando a via de descarboxilação nas células da bainha do feixe vascular. Para tanto se mediu as trocas gasosas, a fluorescência da clorofila a, a atividade das enzimas envolvidas na descarboxilação e na fixação do CO2 na fotossíntese – fosfoenolpiruvato carboxilase (PEPC), ribulose-1,5-bisfosfato carboxilase/oxigenase (Rubisco), enzima málica dependente de nicotinamida adenina dinucleotídeo fosfato (NADP-ME), enzima málica dependente de nicotinamida adenina dinucleotídeo (NAD-ME) e fosfoenolpiruvato carboxiquinase (PEPCK). Com a redução do potencial hídrico foliar devido à baixa disponibilidade de água, houve redução na assimilação de CO2, na condutância estomática, na transpiração e na eficiência do uso da água, bem como na eficiência fotoquímica do fotossistema II. A descarboxilação de CO2 na cana-de-açúcar ocorreu com a participação das três descarboxilases; todavia, a atividade PEPCK foi mantida sob estresse hídrico, enquanto as atividades da NADP-ME e NAD-ME foram reduzidas. A Rubisco teve sua atividade diminuida sob estresse hídrico, enquanto que a PEPC não foi afetada. Após o período de reidratação do substrato, as plantas recuperaram-se atingindo valores de fotossíntese muito próximos dos apresentados em plantas bem hidratadas. Como conclusão, a fotossíntese em cana-de-açúcar sob deficiência hídrica é limitada pela disponibilidade de substrato devido ao fechamento estomático, assim como pela menor atividade fotoquímica e menor atividade da Rubisco. O déficit hídrico também evidenciou a flexibilidade do mecanismo de descaboxilação de CO2 nas células da bainha do feixe vascular, com aumento da contribuição relativa da enzima PEPCK.

https://doi.org/10.20396/bioe.v2i00.18641
e024003

Referências

ASLAM, M. M. et al. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences, v. 23, 1084, 2022. https://doi.org/10.3390/ijms23031084.

BAKER, N. R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, v. 59, p. 89-113, 2008. https://doi.org/10.1146/annurev.arplant.59.032607.092759.

BELLASIO, C.; GRIFFITHS, H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant, Cell and Environment, v. 37, p. 1046-1058, 2014a. https://doi.org/10.1111/pce.12194.

BELLASIO, C.; GRIFFITHS, H. The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway. Plant Physiology, v. 164, p. 466-480, 2014b. https://doi.org/10.1104/pp.113.228221.

BELLASIO, C.; GRIFFITHS, H. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. Journal of Experimental Botany, v. 65, p. 3725-3736, 2014c. https://doi.org/10.1093/jxb/eru052.

BORSANI, J. et al. Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany, v. 60, p. 1823-1837, 2009. https://doi.org/10.1093/jxb/erp055.

CACEFO, V. et al. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions. BMC Plant Biology, v. 19, 144, 2019. https://doi.org/10.1186/s12870-019-1745-7.

CALSA JR, T.; FIGUEIRA, A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Molecular Biology, v. 63, p. 745−762, 2007. https://doi.org/10.1007/s11103-006-9121-z.

CHAPMAN, K. S. R.; HATCH, M.D. Regulation of mitochondrial NAD-malic enzyme involved in C4 pathway photosynthesis. Archives of Biochemistry and Biophysics, v. 184, p. 298-306, 1977. https://doi:10.1016/0003-9861(77)90354-x.

DEGL’INNOCENTI, E.; GUIDI, L.; SOLDATINI, G.F. Effect of chronic O3 fumigation on the activity of some Calvin cycle enzymes in two poplar clones. Photosynthetica, v.40, p.121-126, 2002. https://doi.org/10.1023/A:1020127231198.

DU, Y. C. et al. Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane (Saccharum sp.). Functional Plant Biology, v. 23, p. 719-726, 1996. https://doi.org/10.1071/PP9960719.

FOYER, C. H. et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology, v. 117, p. 283-292, 1998. https://doi.org/10.1104/pp.117.1.283.

FURBANK, R. T.; LEEGOOD, R. C. Carbon metabolism and gas exchange in leaves of Zea mays L. Interaction between the C3 and C4 pathways during photosynthesis induction. Planta, v. 162, p. 457-462, 1984. https://doi.org/10.1007/BF00393459.

FURBANK, R. T. Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? Journal of Experimental Botany, v. 62, p. 3103-3108, 2011. https://doi.org/10.1093/jxb/err080.

GHANNOUM, O. C4 photosynthesis and water stress. Annals of Botany, v. 103, p. 103:635-644, 2009. https://doi.org/10.1093/aob/mcn093.

KAUFMANN, M.R. Evaluation of the pressure chamber method for measurement of water stress in citrus. Proceedings of the American Society for Horticultural Science, v. 93, p. 186-190, 1968.

KROMDIJK, J. et al. Bundle sheath leakiness and light limitation during C4 leaf and canopy CO2 uptake. Plant Physiology, v. 148, p. 2144-2155, 2008. https://doi.org/10.1104/pp.108.129890.

LANDELL, M. G. A.; BRESSIANI, J. A. Melhoramento genético, caracterização e manejo varietal. In: DINARDO-MIRANDA, L. L.; VASCONCELOS, A. C. M.; LANDELL, M. G. A. Cana-de-açúcar. Campinas: Instituto Agronômico, 2008. p. 101-155.

LUNN, J. E.; FURBANK, R. T. Sucrose biosynthesis in C4 plants. New Phytologist, v. 143, p. 221-237, 1999. https://www.jstor.org/stable/2588569.

MACHADO, R. S. et al. Respostas biométricas e fisiológicas ao déficit hídrico em cana-de- açúcar em diferentes fases fenológicas. Pesquisa Agropecuária Brasileira, v. 44, p. 1575-1582, 2009. https://doi.org/10.1590/S0100-204X2009001200003.

MARTÍN, M.; RIUS, S. P.; PODESTÁ, F. E. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form. Plant Physiology and Biochemistry, v. 49, p. 646-653, 2011. https://doi.org/10.1016/j.plaphy.2011.02.015.

MAURINO, V. G. et al. NADP-malic enzyme: immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. Journal of Experimental Botany, v. 48, p. 799-811, 1997. https://doi.org/10.1093/jxb/48.3.799.

MAXWELL, K.; JOHNSON, G.N. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, v. 51, p. 659-668, 2000. https://doi.org/10.1093/jexbot/51.345.659.

PICK, T. R. et al. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. The Plant Cell, v. 23, p. 4208−4220, 2011. https://doi.org/10.1105/tpc.111.090324.

REID, C.D. et al. Comparison of spectrophotometric and radioisotopic methods for the assay of Rubisco in ozone-treated plants. Physiologia Plantarum, v. 101, p. 398-404, 1997. https://doi.org/10.1111/j.1399-3054.1997.tb01014.x

SAGE, R. F.; SHARKEY, T. D.; SEEMANN, J. R. The in-vivo response of the ribulose-1,5- bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta, v. 174, p. 407-416, 1988. https://www.jstor.org/stable/23379276

SALES, C. R. G. et al. Flexibility of C4 decarboxylation and photosynthetic plasticity in sugarcane plants under shading. Enviromental and Experimental Botany, v. 49, p. 34-42, 2018. https://doi.org/10.1016/j.envexpbot.2017.10.027

SCALES, J. C.; PARRY, M. A.; SALVUCCI, M. E. A non-radioactive method for measuring Rubisco activase activity in the presence of variable ATP: ADP ratios, including modification for measuring the activity and activation state of Rubisco. Photosynthesis Research, v. 119, p. 355-365, 2014. https://doi.org/10.1007/s11120-013-9964-5.

SHARKEY, T. D.; SEEMANN, J. R.; BERRY, J. A. Regulation of Ribulose-1,5-bisphosphate carboxylase activity in response to changing partial pressure of O2 and light in Phaseolus vulgaris. Plant Physiology, v. 81, p. 788-791, 1986. https://doi.org/10.1104/pp.81.3.788.

SHARKEY, T. D.; SEEMANN, J. R. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose bisphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiology, v. 89, p. 1060-1065, 1989.https://doi.org/10.1104/pp.89.4.1060.

SHARWOOD, R. E.; SONAWANE, B. V.; GHANNOUM, O. Photosynthetic flexibility in maize exposed to salinity and shade. Journal of Experimental Botany, v. 65, p. 3715-3724, 2014. https://doi.org/10.1104/pp.89.4.1060.

TOFANELLO, V.R. et al. Role of bundle sheath conductance in sustaining photosynthesis competence in sugarcane plants under nitrogen deficiency Photosynthesis Research, v. 149, p. 275–287, 2021. https://doi.org/10.1007/s11120-021-00848-w.

TRONCONI, M. A. et al. The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Journal of Plant Physiology, v. 162, p. 21-26, 2005. https://doi.org/10.1016/j.jplph.2004.06.001.

VON CAEMMERER, S.; FURBANK, R. T. The C4 pathway: an efficient CO2 pump. Photosynthesis Research, v. 77, p. 191-207, 2003. https://doi.org/10.1023/A:1025830019591.

WISE, R. R. et al. Investigation of the limitations to photosynthesis induced by leaf water deficit in field-grown sunflower (Helianthus annuus L.). Plant, Cell and Environment, v. 13, p. 923-931, 1990. https://doi.org/10.1111/j.1365-3040.1990.tb01982.x.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 BioEns@ios

Downloads

Não há dados estatísticos.