Banner Portal
As helmintíases, doenças tropicais negligenciadas, podem afetar a eficácia das vacinas? Com ênfase na COVID-19
PDF

Palavras-chave

COVID-19
Helmintíases
Imunorregulação
Vacinas

Como Citar

ROQUE, Guilherme Augusto Sanches; GALLO-FRANCISCO, Pedro Henrique; SILVA, Marina Flóro e; GERES, Leonardo Fernandes; GIORGIO, Selma. As helmintíases, doenças tropicais negligenciadas, podem afetar a eficácia das vacinas? Com ênfase na COVID-19. BioEns@ios, Campinas, SP, v. 1, n. 00, p. e023002, 2023. DOI: 10.20396/bioe.v1i00.18331. Disponível em: https://econtents.bc.unicamp.br/inpec/index.php/bioe/article/view/18331. Acesso em: 20 maio. 2024.

Dados de financiamento

Resumo

Helmintíases são doenças negligenciadas, estão entre as parasitoses mais comuns em países em desenvolvimento, e podem modular negativamente as respostas imunes anti- parasita dos hospedeiros, resultando na cronicidade da infecção. As pesquisas indicam que durante as infecções com helmintos ocorre a expansão sistêmica e duradoura de linfócitos Th2 e T regulatórios, produtores de citocinas anti-inflamatórias. Estudos epidemiológicos e observacionais em humanos e experimentais em animais indicam a influência, isto é, a imunorregulação dos helmintos no sistema imunológico e nas respostas para vacinas licenciadas tais como, Bacilo de Calmette-Guérin (BCG) e anti-poliomelite. O vírus da família Coronaviridae, SARS-CoV-2, é responsável pela COVID-19, que resultou na pandemia iniciada em janeiro de 2020. E, em tempo recorde, várias vacinas anti-COVID-19 foram desenvolvidas e utilizadas para o combate à pandemia. Pesquisadores têm chamado a atenção para os possíveis efeitos inibitórios das helmintíases nas respostas imunes dos indivíduos imunizados com as vacinas anti-COVID-19. Nesta revisão discutimos estudos significativos da área, as hipóteses levantadas pelos pesquisadores e as implicações para as populações das áreas endêmicas.

https://doi.org/10.20396/bioe.v1i00.18331
PDF

Referências

ABDOLI, A. Helminths and COVID-19 Co-Infections: A Neglected Critical Challenge.

ACS Pharmacology & Translational Science, v. 3, n. 5, p. 1039–1041, 9 out. 2020.

DOI: 10.1021/acsptsci.0c00141

AKELEW, Y. et al. Immunomodulation of COVID‐19 severity by helminth co‐infection: Implications for COVID‐19 vaccine efficacy. Immunity, Inflammation and Disease, v. 10, n. 3, mar. 2022. DOI: 10.1002/iid3.573

AL-KURAISHY, H. M. et al. The Potential Nexus between Helminths and SARS-CoV- 2 Infection: A Literature Review. Journal of Immunology Research, v. 2023, p. 1–14, 20 jun. 2023. DOI: 10.1155/2023/5544819

ALROUJI, M. et al. Immunological interactions in HELMINTHS‐SARS COV ‐2 coinfection: Could old enemy be a friend today? Parasite Immunology, v. 45, n. 5, p. e12982, maio 2023. DOI: 10.1111/pim.12982

CHACIN-BONILLA, L.; CHACÓN-FONSECA, N.; RODRIGUEZ-MORALES, A. J. Emerging issues in COVID-19 vaccination in tropical areas: Impact of the immune response against helminths in endemic areas. Travel Medicine and Infectious Disease, v. 42, p. 102087, jul. 2021. DOI: 10.1016/j.tmaid.2021.102087

CHEN, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, v. 130, n. 5, p. 2620–

, 13 abr. 2020. DOI: 10.1172/JCI137244

COOPER, P. J. et al. Albendazole Treatment of Children with Ascariasis Enhances the Vibriocidal Antibody Response to the Live Attenuated Oral Cholera Vaccine CVD 103‐HgR. The Journal of Infectious Diseases, v. 182, n. 4, p. 1199–1206, out. 2000. DOI: 10.1086/315837

DISPINSERI, S. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nature Communications, v. 12, n. 1, p. 2670, dez. 2021. DOI: 10.1038/s41467-021-22958-8

EGWANG, T. G.; OWALLA, T. J.; KEMIGISHA, M. COVID-19 vaccine trials must

include helminth-infected cohorts. Nature Immunology, v. 23, n. 2, p. 148–148, fev. 2022. DOI: 10.1038/s41590-021-01116-8

ELIAS, D. et al. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette–Guérin (BCG) vaccination. Clinical and Experimental Immunology, v. 123, n. 2, p. 219–225, 20 dez. 2001. DOI: 10.1046/j.1365-2249.2001.01446.x

ELIAS, D. et al. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine, v. 26, n. 31, p. 3897– 3902, jul. 2008. DOI: 10.1016/j.vaccine.2008.04.083

FARA, A. et al. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biology, v. 10, n. 9, p. 200160, set. 2020.DOI: 10.1098/rsob.200160

FLANAGAN, K. L. et al. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annual Review of Cell and Developmental Biology, v. 33, n. 1, p. 577–599, 6 out. 2017. DOI: 10.1146/annurev-cellbio-100616-060718

GHAFFAR, Y. A. et al. Hepatitis B Vaccination in Children Infected with Schistosoma mansoni: Correlation with Ultrasonographic Data. The American Journal of Tropical Medicine and Hygiene, v. 43, n. 5, p. 516–519, 1 nov. 1990. DOI: 10.4269/ajtmh.1990.43.516

GIORGIO, S.; GALLO-FRANCISCO, P. H. Aspectos evolutivos dos fenômenos imunopatológicos com ênfase na COVID-19. Arquivos de Asma Alergia e Imunologia, v. 6, n. 3, 2022. DOI: 10.5935/2526-5393.20220037

GRIFONI, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, v. 181, n. 7, p. 1489- 1501.e15, jun. 2020. DOI: 10.1016/j.cell.2020.05.015

HARNETT, W.; HARNETT, M. M. Therapeutic immunomodulators from nematode parasites. Expert Reviews in Molecular Medicine, v. 10, p. e18, jun. 2008. DOI: 10.1017/S1462399408000720

HARTMANN, W. et al. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Reports, v. 29, n. 8, p. 2243- 2256.e4, nov. 2019. DOI: 10.1016/j.celrep.2019.10.051

HARTMANN, W. et al. Pre-existing helminth infection impairs the efficacy of adjuvanted influenza vaccination in mice. PLOS ONE, v. 17, n. 3, p. e0266456, 31 mar. 2022. DOI: 10.1371/journal.pone.0266456

HAYS, R. et al. Helminth coinfection and COVID-19: An alternate hypothesis. PLOS Neglected Tropical Diseases, v. 14, n. 8, p. e0008628, 17 ago. 2020. DOI: 10.1371/journal.pntd.0008628

HOFFMANN, W. et al. Litomosoides sigmodontis in Mice: Reappraisal of an Old Model for Filarial Research. Parasitology Today, v. 16, n. 9, p. 387–389, set. 2000. DOI: 10.1016/s0169-4758(00)01738-5

KATZ, N. Inquérito Nacional de Prevalência da Esquistossomose mansoni e Geo-helmintoses – Belo Horizonte: CPqRR, 2018.

MAIZELS, R. M.; YAZDANBAKHSH, M. Immune Regulation by helminth parasites: cellular and molecular mechanisms. Nature Reviews Immunology, v. 3, n. 9, p. 733– 744, set. 2003.DOI: 10.1038/nri1183

MARTVISET, P. et al. Current prevalence and geographic distribution of helminth infections in the parasitic endemic areas of rural Northeastern Thailand. BMC Public Health, v. 23, n. 1, p. 448, 8 mar. 2023. DOI: 10.1186/s12889-023-15378-4

MATHIEU, E et al. Coronavirus Pandemic (COVID-19). 2020. Disponível em:< https://ourworldindata.org/covid-vaccinations#citation >. Acesso em: 31.jul.2023.

MCSORLEY, H. J.; MAIZELS, R. M. Helminth Infections and Host Immune Regulation. Clinical Microbiology Reviews, v. 25, n. 4, p. 585–608, out. 2012. DOI: 10.1128/CMR.05040-11

MONTEIRO, M. B. C. L. et al. Intestinal helminthes and/or Toxocara infection are unrelated to anti-HBs titers in seven-year-old children vaccinated at birth with recombinant hepatitis B vaccine. Revista da Sociedade Brasileira de Medicina Tropical, v. 40, n. 2, p. 147–151, abr. 2007. DOI: 10.1590/S0037-86822007000200001

MUDD, P. A. et al. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell, v. 185, n. 4, p. 603- 613.e15, fev. 2022. DOI: 10.1016/j.cell.2021.12.026

MUSAIGWA, F. et al. Schistosoma mansoni infection induces plasmablast and plasma cell death in the bone marrow and accelerates the decline of host vaccine responses. PLOS Pathogens, v. 18, n. 2, p. e1010327, 14 fev. 2022. DOI: 10.1371/journal.ppat.1010327

NASTASI-MIRANDA, J. A. Prevalencia de parasitosis intestinales en unidades educativas de Ciudad Bolívar, Venezuela. Revista CUIDARTE, v. 6, n. 2, p. 1077, 17 jul. 2015. DOI: 10.15649/cuidarte.v6i2.181

NATUKUNDA, A. et al. The effect of helminth infection on vaccine responses in humans and animal models: A systematic review and meta‐analysis. Parasite Immunology, v. 44, n. 9, set. 2022. DOI: 10.1111/pim.12939

NKURUNUNGI, G. et al. Effect of intensive treatment for schistosomiasis on immune responses to vaccines among rural Ugandan island adolescents: randomised controlled trial protocol A for the ‘POPulation differences in VACcine responses’ (POPVAC) programme. BMJ Open, v. 11, n. 2, p. e040426, fev. 2021. DOI: 10.1136/bmjopen-2020-040426

NONO, J. K. et al. Schistosomiasis Burden and Its Association With Lower Measles Vaccine Responses in School Children From Rural Cameroon. Frontiers in Immunology, v. 9, p. 2295, 9 out. 2018. DOI: 10.3389/fimmu.2018.02295

NONO, J. K. et al. Influence of schistosomiasis on host vaccine responses. Trends in Parasitology, v. 38, n. 1, p. 67–79, jan. 2022. DOI: 10.1016/j.pt.2021.07.009

NOOKALA, S. et al. Impairment of Tetanus-Specific Cellular and Humoral Responses following Tetanus Vaccination in Human Lymphatic Filariasis. Infection and Immunity, v. 72, n. 5, p. 2598–2604, maio 2004. DOI: 10.1128/IAI.72.5.2598-2604.2004

NOUATIN, O. et al. Exploratory analysis of the effect of helminth infection on the immunogenicity and efficacy of the asexual blood-stage malaria vaccine candidate GMZ2. PLOS Neglected Tropical Diseases, v. 15, n. 6, p. e0009361, 1 jun. 2021. DOI: 10.1371/journal.pntd.0009361

OLIVEIRA, R. A.; GURGEL-GONÇALVES, R.; MACHADO, E. R. Intestinal

parasites in two indigenous ethnic groups in northwestern Amazonia. Acta Amazonica, v. 46, n. 3, p. 241–246, set. 2016. DOI: 10.1590/1809-4392201505883

PANIZ-MONDOLFI, A. E. et al. COVID-19 and helminth infection: Beyond the Th1/Th2 paradigm. PLOS Neglected Tropical Diseases, v. 15, n. 5, p. e0009402, 24 maio 2021. DOI: 10.1371/journal.pntd.0009402

RAMÍREZ, J. D. et al. SARS-CoV-2 in the Amazon region: A harbinger of doom for Amerindians. PLOS Neglected Tropical Diseases, v. 14, n. 10, p. e0008686, 29 out. 2020. DOI: 10.1371/journal.pntd.0008686

RIJKERS, G. T. et al. Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines, v. 9, n. 8, p. 848, 3 ago. 2021. DOI: 10.3390/vaccines9080848

RINER, D. K. et al. Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid. PLOS Neglected Tropical Diseases, v. 10, n. 12, p. e0005180, 7 dez. 2016. DOI: 10.1371/journal.pntd.0005180

SABIN, E. A. et al. Impairment of Tetanus Toxoid-Specific Thl-like Immune Responses in Humans Infected with Schistosoma mansoni. The Journal of Infectious Diseases, v. 173, n. 1, p. 269–272, jan. 1996. DOI: 10.1093/infdis/173.1.269

SETTE, A.; CROTTY, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, v. 184, n. 4, p. 861–880, fev. 2021.

SHE, J. et al. 2019 novel coronavirus of pneumonia in Wuhan, China: emerging attack and management strategies. Clinical and Translational Medicine, v. 9, n. 1, jan. 2020. DOI: 10.1186/s40169-020-00271-z

STETTER, N. et al. A Combination of Deworming and Prime-Boost Vaccination Regimen Restores Efficacy of Vaccination Against Influenza in Helminth-Infected Mice. Frontiers in Immunology, v. 12, p. 784141, 21 dez. 2021. DOI: 10.3389/fimmu.2021.784141

TWEYONGYERE, R. et al. Effect of Schistosoma mansoni infection and its treatment on antibody responses to measles catch-up immunisation in pre-school children: A randomised trial. PLOS Neglected Tropical Diseases, v. 13, n. 2, p. e0007157, 14 fev. 2019. DOI: 10.1371/journal.pntd.0007157

UDALL, D. N. Recent Updates on Onchocerciasis: Diagnosis and Treatment. Clinical Infectious Diseases, v. 44, n. 1, p. 53–60, jan. 2007. DOI: 10.1086/509325

WAIT, L. F.; DOBSON, A. P.; GRAHAM, A. L. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine, v. 38, n. 35, p. 5582–5590, jul. 2020. DOI: 10.1016/j.vaccine.2020.06.064

WHITEHEAD, B. et al. Helminths and COVID-19 susceptibility, disease progression, and vaccination efficacy. Trends in Parasitology, v. 38, n. 4, p. 277–279, abr. 2022. DOI: 10.1016/j.pt.2022.01.007

WOLDAY, D. et al. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine, v. 39, p. 101054, set. 2021. DOI: 10.1016/j.eclinm.2021.101054

WORLD HEALTH ORGANIZATION. Soil-transmitted helminth infections. Disponível em:

https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth- infections. Acesso em: 15 ago. 2022.

WORLD HEALTH ORGANIZATION. WHO Coronavirus (COVID-19) Dashboard. Disponível em: https://covid19.who.int/. Acesso em: 10 out.2023.

ZHU, F. et al. A New Role for Old Friends: Effects of Helminth Infections on Vaccine Efficacy. Pathogens, v. 11, n. 10, p. 1163, 8 out. 2022. DOI: 10.3390/pathogens11101163

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 BioEns@ios

Downloads

Não há dados estatísticos.