Graphene to fluorographene

a reactive molecular dynamics study


  • P A S Autreto Universidade Estadual de Campinas
  • Douglas S Galvao Universidade Estadual de Campinas
  • Ricardo P B Santos Universidade Estadual Paulista
  • S B Legoas Universidade Federal de Roraima


Graphene membranes, Fluographene


We have investigated, using fully reactive molecular dynamics methodology, the structural and dynamical aspects of the fluorination of graphene membranes leading to fluographene formation. The strong and fast chemical reactivity processes involving fluorine produce distinct aspects of the observed in the case of the hydrogenation of graphene (the so called graphane formation). Fluorination tends to produce significant defective areas on the graphene membrane with alteration on the typical carbon-carbon distances, sometimes with the presence of large holes due to carbon losses. This may explain the broad distribution of values of lattice parameter experimentally observed.


Não há dados estatísticos.

Biografia do Autor

P A S Autreto , Universidade Estadual de Campinas

Universidade Estadual de Campinas

Douglas S Galvao , Universidade Estadual de Campinas

Universidade Estadual de Campinas

Ricardo P B Santos , Universidade Estadual Paulista

Universidade Estadual Paulista

S B Legoas , Universidade Federal de Roraima

Universidade Federal de Roraima


R. Ruoff. Graphene: Calling all chemists. Nature Nanotechnology, 3(1):10–11, 2008.

S.H. Cheng, K. Zou, F. Okino, HR Gutierrez, A. Gupta, N. Shen, PC Eklund, JO Sofo, and J. Zhu. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Physical Review B, 81(20):205435, 2010.

F. Withers, M. Dubois, and A.K. Savchenko. Electron properties of fluorinated single-layer graphene transistors. Physical Review B, 82(7):73403, 2010.

S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y.Wu, S.B.T. Nguyen, and R.S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7):1558–1565, 2007.

S. Gilje, S. Han, M. Wang, K.L. Wang, and R.B. Kaner. A chemical route to graphene for device applications. Nano Lett, 7(11):3394–3398, 2007.

C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7(11):3499–3503, 2007.

X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W.A. De Heer. Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Physical review letters, 101(2):26801, 2008.

A.B. Kaiser, C. Gómez-Navarro, R.S. Sundaram, M. Burghard, and K. Kern. Electrical conduction mechanism in chemically derived graphene monolayers. Nano letters, 9(5):1787–1792, 2009.

J.O. Sofo, A.S. Chaudhari, and G.D. Barber. Graphane: A twodimensional hydrocarbon. Physical Review B, 75(15):153401, 2007.

S. Ryu, M.Y. Han, J. Maultzsch, T.F. Heinz, P. Kim, M.L. Steigerwald, and L.E. Brus. Reversible basal plane hydrogenation of graphene. Nano letters, 8(12):4597–4602, 2008.

DC Elias, RR Nair, TMG Mohiuddin, SV Morozov, P. Blake, MP Halsall, AC Ferrari, DW Boukhvalov, MI Katsnelson, AK Geim, et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 323(5914):610, 2009.

M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, and D.S. Galvao. Graphene to graphane: a theoretical study. Nanotechnology, 20:465704, 2009.

G. Eda and M. Chhowalla. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22(22):2392–2415, 2010. Times Cited: 5.

R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small, 6(24):2773–2914, 2010.

A.D. Lueking, H.R. Gutierrez, D.A. Fonseca, D.L. Narayanan,D. Van Essendelft, P. Jain, and C.E.B. Clifford. Combined hydrogen production and storage with subsequent carbon crystallization. J. Am. Chem. Soc, 128(24):7758–7760, 2006.

N.R. Ray, AK Srivastava, and R. Grotzschel. In Search of Graphane a Two-Dimensional Hydrocarbon. Arxiv preprint arXiv:0802.3998, 2008.

DW Boukhvalov, MI Katsnelson, and AI Lichtenstein. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B, 77(3):35427, 2008.

S. Casolo, O.M. Lovvik, R. Martinazzo, and G.F. Tantardini. Understanding adsorption of hydrogen atoms on graphene. The Journal of chemical physics, 130:054704, 2009.

J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow. Properties of fluorinated graphene films. Nano Letters, 10(8):3001–3005.

O. Leenaerts, H. Peelaers, AD Hernandez-Nieves, B. Partoens, and FM Peeters. First-principles investigation of graphene fluoride and graphane. Arxiv preprint arXiv:1009.3847, 2010.

A.C.T. Van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard III. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 105(41):9396–9409, 2001.

A.C.T. van Duin and J.S.S. Damsté. Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry, 34(4):515–526, 2003.

K. Chenoweth, A.C.T. van Duin, and W.A. Goddard III. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A, 112(5):1040, 2008.

S. Plimpton. Fast parallel algorithms for short-range moleculardynamics. Journal of Computational Physics, 117(1):1–19, 1995.

N. L. Allinger, Y. H. Yuh, and J. H. Lii. Molecular mechanics- the mm3 force-field for hydrocarbons .1. Journal of the American Chemical Society, 111(23):8551–8566, 1989.

S. S. Han, T. H. Yu, B. V. Merinov, A. C. T. van Duin, R. Yazami, and W. A. Goddard. Unraveling Structural Models of Graphite Fluorides by Density Functional Theory Calculations. Chemistry of Materials, 22(6):2142–2154, 2010.

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, and Y. Ito. On the so-called ’semi-ionic’ c-f bond character in fluorine-gic. Carbon, 42(15):3243–3249, 2004.


Como Citar

AUTRETO , P. A. S. .; GALVAO , D. S. .; SANTOS , R. P. B. .; LEGOAS , S. B. . Graphene to fluorographene : a reactive molecular dynamics study . Physicae Proceedings, Campinas, SP, v. 1, n. 1, p. 23–25, 2020. Disponível em: Acesso em: 24 fev. 2024.