Boron nitride nanoscrolls


  • E. Perim Universidade Estadual de Campinas
  • D. S. Galvao Universidade Estadual de Campinas


Van der Waals forces, Bending


Recently, based on computer simulations, it has been proposed that stable boron nitride nanoscrolls (BNNSs) can exist. In this work we show that the BNNSs stability mechanisms follow the same simple physical principles proposed for carbon nanoscrolls (CNSs). For both classes of scrolls, the mechanical stability arises as the result of the interplay between attractive van der Waals forces and the elastic (bending) deformations. The topology (chirality) of the scrolled single-layer membranes plays an important role defining BNNS stability. A controled way to produce BNNSs is also addressed.


Não há dados estatísticos.

Biografia do Autor

E. Perim , Universidade Estadual de Campinas

Universidade Estadual de Campinas

D. S. Galvao , Universidade Estadual de Campinas

Universidade Estadual de Campinas


H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. C 60: buckminsterfullerene. Nature, 318(6042):162–163, 1985.

S. Iijima et al. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58, 1991.

KS Novoselov, AK Geim, SV Morozov, D. Jiang, Y. Zhang, SV Dubonos, IV Grigorieva, and AA Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666, 2004.

R. Bacon. Growth, structure, and properties of graphite whiskers. Journal of Applied Physics, 31(2):283–290, 1960.

L.M. Viculis, J.J. Mack, and R.B. Kaner. A chemical route to carbon nanoscrolls. Science, 299(5611):1361, 2003.

H. Shioyama and T. Akita. A new route to carbon nanotubes. Carbon, 41(1):179–181, 2003.

S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvão, and R.H. Baughman. Structure and dynamics of carbon nanoscrolls. Nano letters, 4(5):881–884, 2004.

R. Rurali, VR Coluci, and DS Galvão. Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: Firstprinciples calculations. Physical Review B, 74(8):85414, 2006.

SF Braga, VR Coluci, RH Baughman, and DS Galvão. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study. Chemical physics letters, 441(1-3):78–82, 2007.

VR Coluci, SF Braga, RH Baughman, and DS Galvao. Prediction of the hydrogen storage capacity of carbon nanoscrolls. Physical Review B, 75(12):125404, 2007.

L. Boulanger, B. Andriot, M. Cauchetier, and F.Willaime. Concentric shelled and plate-like graphitic boron nitride nanoparticles produced by co2 laser pyrolysis. Chemical physics letters, 234(1-3):227–232, 1995.

A. Rubio, J.L. Corkill, and M.L. Cohen. Theory of graphitic boron nitride nanotubes. Physical Review B, 49(7):5081, 1994.

X. Blase, A. Rubio, SG Louie, and ML Cohen. Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters), 28:335, 1994.

J.C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano letters, 9(7):2683–2689, 2009.

C. Jin, F. Lin, K. Suenaga, and S. Iijima. Fabrication of a freestanding boron nitride single layer and its defect assignments. Physical review letters, 102(19):195505, 2009.

E. Perim and D.S. Galvao. The structure and dynamics of boron nitride nanoscrolls. Nanotechnology, 20:335702, 2009.

AK Rappe, CJ Casewit, KS Colwell, WA Goddard Iii, and WM Skiff. Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25):10024–10035, 1992.

Materials Studio is a suite of simulation programs available from Accelrys.

Z. Zhang and T. Li. Carbon nanotube initiated formation of carbon nanoscrolls. Applied Physics Letters, 97:081909, 2010.

E. Perim, R. Paupitz, and D. S. Galvao. Submitted for publication.


Como Citar

PERIM , E. .; GALVAO , D. S. . Boron nitride nanoscrolls . Physicae Proceedings, Campinas, SP, v. 1, n. 1, p. 15–16, 2020. Disponível em: Acesso em: 1 fev. 2023.