Banner Portal
On the lifetime of suspended atomic chains formed from stretched metallic gold nanowires
PDF

Palavras-chave

Física
Nanofios metálicos

Como Citar

Sato , F. ., Lagos, M. ., Autreto, P. . ., Ugarte , D. ., & Galvão , D. . (2009). On the lifetime of suspended atomic chains formed from stretched metallic gold nanowires . Physicae, 8(1), 7–10. https://doi.org/10.5196/physicae.8.1

Resumo

Metallic nanowires have been object of intense theoretical and experimental works in the lastyears. In spite of the large number of studies for such systems some fundamental aspects remain open and polemical questions. In this work we report preliminary results for the study of the final steps of Au suspended atomic chains (LACs) with different number of atoms as a function of tem-perature. We have carried out classical molecular dynamics simulations using tight-binding models with a second moment approximations. Our results suggest a more complex phenomenon than previously anticipated. The dynamics of chain rupture seems to be determined beyond thermodynamics contributions and the bond breaking patterns were observed to be chain-length dependent.

https://doi.org/10.5196/physicae.8.1
PDF

Referências

N. Agrait, A. L. Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (20003).

U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, Science 248, 454 (1990).

Y. Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 34553458 (1997).

H. Ohnishi, Y. Kondo, and K. Takayanagy, Nature 395, 780 (1998).

J. Bettini, F. Sato, P. Z. Coura, S. O. Dantas, D. S. Galv~ao, and D. Ugarte, Nature Nanotechnology 1, 182 (2006).

M. J. Lagos, F. Sato, J. Bettini, V. Rodrigues, D. S. Galv~ao, D. Ugarte, Nature Nanotechnology 4, 149 (2009).

V. Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124 (2000).

V. Rodrigues and D. Ugarte, Phys. Rev. B 63, 073405 (2001).

T. Kizuka, S. Umehaa, and S. Fujisawa, Jpn. J. Appl. Phys. 240, L71 (2001).

H. Koizumi, Y. Oshima, Y. Kondo, and K. Takayanagi, Ultramicroscopy 88, 17 (1002).

J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature 375, 767 (1995).

C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica (Amsterdam) 191C, 485 (1992).

E. Tosatti and S. Prestipino, Science 289, 561 (2000).

Y.Kondo and K. Takayanagi, Science 289, 606 (2000).

P. Z. Coura, S. B. Legoas, A. S. Moreira, F. Sato, V. Rodrigues, S. O. Dantas, D. Ugarte, and D. S. Galv~ao, Nano Letters 4, 1187 (2004).

F. Sato, A. S. Moreira, J. Bettini, S. O. Dantas, P. Z. Coura, D. Ugarte, and D. S. Galv~ao, Phys. Rev. B 74, 193401 (2006).

J. C. Gonzalez, V. Rodrigues, J. Bettini, L. G. C. Rego, A. R. Rocha, P. Z. Coura, S. O. Dantas, F. Sato, D. S. Galv~ao, D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004).

F. Sato, A. S. Moreira, P. Z. Coura, S. O. Dantas, S. B. Legoas, D. Ugarte, and D. S. Galv~ao, App. Phys. A, Mat. Sci. & Proc. 81, 1527 (2005).

M. R. Sorensen, M. Brandbyge, W. Jacobsen, Phys. Rev. B 87, 3283 (1998).

E. Z. da Silva, A. J. R. da Silva, A. Fazzio, Phys. Rev. Lett. 87, 256102 (2001).

J .W. Kang, H. J. Hwang, Nanotech. 13, 503 (2002).

C. A. Sta ord, D. Baeriswyl, J. Burki, Phys. Rev. Lett. 79, 2863 (1997).

C. Yannouleas, U. Landman, J. Phys. Chem. B 101, 5780 (1997).

N. D. Lang, Phys. Rev. Lett. 79, 1357 (1997).

C. C. Wan, J.-L. Mozos, G. Taraschi, J. Wang, H. Go, Appl. Phys. Lett. 71, 419 (1997).

L. G. C. Rego, A. R. Rocha, V. Rodrigues, D. Ugarte, Phys. Rev. B 67, 045 412 (2003).

R. N. Barnet, U. Landman, Nat. 87, 788 (1997)

A. Nakamura, M. Brandbyge, L. B. Hansen, K. W. Jacobsen, Phys. Rev. Lett. 82, 1538 (1999).

S. B. Legoas, D. S. Galv~ao, V. Rodrigues, D. Ugarte, Phys. Rev. Lett. 88, 076 105 (2002).

D. Kruger, H. Fuchs, R. Rousseau, D. Marx, M. Parrinello, Phys. Rev. Lett. 89, 186 402 (2002).

H. S. Park and J. A. Zimmerman, Script Materialia 54, 1127 (2006).

H. S. Park and J. A. Zimmerman, Phys. Rev. B 72, 054106 (2005).

F. Cleri and V. Rosato, Phys. Rev. B 48, 22-33 (1993).

V. Rosato, M. Guillope, and B. Legrand, Phil. Mag. A 59(2), 321-336 (1989).

Q. Pu, Y. Leng, L. Tsetseris, H. S. Park, S. T. Pantelides, P. T. Cummings, J. Chem. Phys. 126, 144707 (2007).

F. Cyrot-Lackmann, J. Phys. Chem. Solids 29, 1235 (1968).

F. Cyrot-Lackmann, Suf. Sci. 15, 535 (1969).

A. P. Sutton, Electronic Structure of Materials, Oxford University Press Inc, Oxford, 1996.

F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids 31, 1295 (1970).

F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids 32, 285 (1971).

J. M. Haile, Molecular Dynamics Simulation - Elementary Methods, John Willey & Sons, Inc., New York, 1992.

D. C. Rapaport, The Art Of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2001.

M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Oxford University Press, Oxford, 1996.

F. Ercolessi, A molecular dynamics primer. http://www.ud.infn.it/~ercolessi/md/md, http://www.freescience.info/books.php?id=

A publicação é de acesso aberto, sendo os autores responsáveis pelo seu conteúdo. Utiliza-se a licença do Creative Commons para a disseminação da publicação em relação aos direitos autorais.

Downloads

Não há dados estatísticos.