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Quartic Potential in Phase Space
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Using the notion of symplectic structure and Weyl product of non-commutative geometry, unitary representa-
tions for the Galilei group are construct, and the Schrödinger equation in phase space is derived. An approach for
perturbation theory in phase space is derived. The phase space amplitude and the Wigner function are calculated
for quartic potential in phase space.

I. INTRODUCTION

Wigner introduced, in 1932, the first formalism to quantum
mechanics in phase space [1]. He was motived by the problem
of finding a way to improve the quantum statistical mechanics,
based on the density matrix, to treat the transport equations
for superfluids. Phase space, Γ plays an important role in this
realm, since it is the natural manifold to write a kinect theory.
In the Wigner formalism, each operator, say A, defined in the
Hilbert space, H, is associated with a function, say aw(q, p), in
Γ. Then there is an application Ωw : A→ aw(q, p), such that,
the associative algebra of operators defined in H turns out to
be an associative (but not commutative) algebra is Γ, given by
Ω : AB→ aw(q, p)?bw(q, p), where the star-product (or Weyl
product) ? is defined by Eq.(1) [7]:

aw(q, p)?bw(q, p) = aw(q, p)exp[
i
2

←−
∂

∂q

−→
∂

∂ p
−
←−
∂

∂ p

−→
∂

∂q
]bw(q, p). (1)

In this equation the arrows indicates the direction of action
of the operators. Note that Eq.(1) can be seen as an operator
Â acting on functions bw, such that Â(bw) = aw ? bw. From
a mathematical and physical standpoints, the star-product has
been explored in the phase space along different ways[2]-[13].
However, it should be of interest to study the irreducible uni-
tary representations of kinematical groups considering oper-
ators of the type aw?. In this sense, in a recent work [14],
using the notion of symplectic struture and Weyl product of a
non-commutative geometry, unitary representations of Galilei
group were studied and the Schrödinger equation in phase
space was obtained. This approach provides a new procedure
to derive the Wigner function without the use of the Liouville-
von Neumman equation. In an other work [15], this represen-
tation was extended to the relativistic case using the Poincaré
group. In summary, using the notion of symplectic structure
and the Weyl product, unitary representations for Lie alge-
bra for the Poincaré group were constructed. Then the Klein-
Gordon and the Dirac equations in phase space are derived.
Connection of this formalism with the Wigner function is pre-
sented.
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In this work, the study is restricted to the non-relativistic
case. Eigenvalue problems of Schrödinger equation are stud-
ied in phase space using the quartic potential. The problem
of harmonic oscillator plus a quartic potential is applicable to
numerous physical problems, such as in quantum cosmology
[16, 17], quantum chaos [18, 19] and in the theory of crystal
[20].

The presentation is organized in the following way. In sec-
tion 2, we define a Hilbert space H (Γ) over a phase space
with its natural symplectic struture. H (Γ) will turn out to be
the space of representation of the Galileu group. In the section
3 , we construct the generators aw(q, p)? for the Galilei group
and study the representation space of such operators. In sec-
tion 4, a representation for the Schrödinger equation in phase
space is derived and the lagrangian density is written. In the
section 5 results for the quartic oscillator in the pertubative
approach are presented. Finally, some closing comments are
given in Section 6.

II. HILBERT SPACE AND SYMPLECTIC STRUTURE

Consider M an n-dimensional analytical manifold where
each point is specified by coordinates q = (q1, ...,qn), such
that the coordinates of each point in T ∗M will be denoted
by (q, p) = (q1, ...,qn, p1, ..., pn). The space T ∗M is equipped
with a symplectic struture by introducing a 2-form

ω = dq∧d p, (2)

called the symplectic form. Consider the following bidiffer-
ential operator on C∞(T ∗M),

Λ =

←−
∂

∂q

−→
∂

∂ p
−
←−
∂

∂ p

−→
∂

∂q
, (3)

such that for C∞ functions, f = f (q, p) and g = g(q, p), we
have

{ f ,g}= ω( f Λ,gΛ) = f Λg, (4)

where

{ f ,g}= ∂ f
∂q

∂g
∂ p
− ∂ f

∂ p
∂g
∂q

. (5)

is the Poisson bracket and f Λ and gΛ are two vector fields
given by
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X f = f Λ =
∂ f
∂q

∂

∂ p
− ∂ f

∂ p
∂

∂q
, (6)

and

Xg = gΛ =
∂g
∂q

∂

∂ p
− ∂g

∂ p
∂

∂q
. (7)

The space T ∗M endowed with this symplectic structure is
called the phase space, and will be denoted by Γ.

The notion of Hilbert space associated with the phase space
Γ is introduced by considering the set of square integrable
functions, φ(q, p) in Γ, such that∫

d pdqφ
∗(q, p)φ(q, p)< ∞. (8)

Then we can write φ(q, p) = 〈q, p|φ〉, with∫
d pdq|q, p〉〈q, p|= 1, (9)

to be 〈φ | the dual vector of |φ〉. We call this the Hilbert space
H (Γ).

III. THE GALILEI GROUP IN H (Γ)

In this section, the representations of Galilei group in
Hilbert space H (Γ) are studied. First we construct unitary
transformations U : H(Γ)→H(Γ) such that 〈ψ1|ψ2〉 is invari-
ant. Starting with the operator Λ defined in Eq.(2) a mapping
e

ih̄Λ

2 = ? : Γ×Γ→ Γ, called Weyl product, can be defined by

f (q, p)?g(q, p) = f (q, p)exp[
ih̄
2
(
←−
∂q
−→
∂p−

←−
∂p
−→
∂q)]g(q, p), (10)

where f and g are in Λ and ∂x =
∂

∂x , x = (q, p)( The reduced
Planck constant is used to fix units.)

The Galilei Lie algebra in phase space can be constructed
by using the Weyl operators given by f?. A set of operators
are defined without implying a physics interpretation. We de-
fine the following operators,

Q̂ = q?= q+
ih̄
2

∂p, (11)

and

P̂ = p?= p− ih̄
2

∂q. (12)

Using the functions ki,

ki = mqi− t pi, (13)

where m and t are parameters, the star-operator relative this
function is

K̂ = ki?= mqi ?−t pi?= mQ̂i− tP̂i. (14)

For the functions

li = εi jkq j pk, (15)

we have the star-operator,

L̂i = εi jkQ̂ jP̂k = εi jkq j pk−
ih̄
2

εi jkq j
∂

∂ pk

+
ih̄
2

εi jk pk
∂

∂q j
+

h̄2

4
∂ 2

∂q j∂ pk
(16)

For the function

h =
p2

2m
=

1
2m

(p2
1 + p2

2 + p2
3), (17)

the star-operator is given as

Ĥ =
P̂2

2m
=

1
2m

(P̂1
2
+ P̂2

2
+ P̂3

2
) (18)

=
1

2m
[(p1−

ih̄
2

∂

∂q1
)2 +(p2−

ih̄
2

∂

∂q2
)2

+(p3−
ih̄
2

∂

∂q3
)2] (19)

These operators satisfy the Galilei-Lie algebra with central ex-
tension. The Galilei-Lie algebra is given for the commutation
relations,

[L̂i, L̂ j] = ih̄εi jkL̂k, (20)

[L̂i, K̂ j] = ih̄εi jkK̂k, (21)

[L̂i, P̂j] = ih̄εi jkP̂k, (22)

[K̂i, K̂ j] = 0, (23)

[K̂i, P̂j] = ih̄mδi j1, (24)

[K̂i, Ĥ] = ih̄P̂i, (25)

[P̂i, P̂j] = 0, (26)

[P̂i, Ĥ] = 0, (27)

[L̂i, Ĥ] = 0. (28)

For the Galilean symmetry, P̂ , K̂, L̂ and Ĥ are generators of
translations, boost, rotations and time translations. The phys-
ical content of this representation is derived by observing that
Q̂ and P̂ are transformed by the boost according to:

exp(−iv.
K̂
h̄
)P̂jexp(iv.

K̂
h̄
) = P̂j +mv j1, (29)

exp(−iv.
K̂
h̄
)Q̂ jexp(iv.

K̂
h̄
) = Q̂ j + v jt1. (30)

Futhermore

[Q̂ j, P̂n] = ih̄δ jn1, (31)
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Therefore, Q̂ and P̂ can be taken to be the physical observ-
ables of position and momentum, respectively, with Eq.(29)
and Eq.(31) describing, consistently, the way Q̂ and P̂ trans-
form under the Galilei boost.

The invariants of the Galilei algebra in this representation
are given by

I1 = Ĥ− P̂2

2m
and I2 = L̂− 1

m
K̂× P̂. (32)

The invariant I1 describes the Hamiltonian of free particle,
while I2 is associated with the spin degrees of freedom. The
parameters m and t are interpreted as mass and time. Here, we
will be mainly concerned with the scalar representations i.e.
I2 = 0.

With Ĥ, the time evolution of an observable Â is specified
by

exp(−it
Ĥ
h̄
)Â(0)exp(it

Ĥ
h̄
) = Â(t), (33)

which results in

ih̄
∂ Â(t)

∂ t
= Â(t)Ĥ− ĤÂ(t) = [Â(t), Ĥ]. (34)

The operators of position and momentum are defined by the
following form,

P̂ = p?= p1− ih̄
2

∂q = p1+
1
2

P̃, (35)

and

Q̂ = q?= p1+
ih̄
2

∂p = q1+
1
2

Q̃. (36)

If the c-number operators are defined as

P = 2p1 e Q = 2q1, (37)

the position and momentum operators can be written as

P̂ =
1
2
(P+ P̃) and Q̂ =

1
2
(Q+ Q̃). (38)

In accord with the boost, Q and P transform as

exp(−iv
K̂
h̄
)2Qexp(iv

K̂
h̄
) = 2Q+ vt1, (39)

and

.exp(−iv
K̂
h̄
)2Pexp(iv

K̂
h̄
) = 2P+mv1. (40)

Consequently, we find that Q and P transform as position and
momentum. However, since [Q,P] = 0, Q and P cannot be
interpreted as observables, althought they can be used to con-
struct a phase space frame in the Hilbert space. So, a set of
normalized eigenvectors, |q, p〉, are defined with {q} and {p}
,being a set of eigenvalues, that satisfy

Q|q, p〉= q|q, p〉, (41)

and

P|q, p〉= p|q, p〉, (42)

with

〈q, p|q′, p′〉= δ (q−q′)δ (p− p′), (43)

and ∫
dqd p|q, p〉〈q, p|= 1. (44)

The operators Q and P, with the eigenvalues {q, p} are coor-
dinates of a phase space Γ, where the symplectic struture is
used to define the Weyl product. Using the operator Λ, the
star product is constructed as

e
ih̄
2 Λ : Γ×Γ→ Γ. (45)

Thus the representations of Galilei group, that were con-
structed,provide a structure in the simplectic manifold.

IV. THE SCHRÖDINGER EQUATION IN PHASE
SPACE

Consider |α(t)〉 in H(Γ) as a representative quantity de-
scribing the state of a quantum system, such that with the kets
{|q, p〉}, we have

ψα (q, p, t) = 〈q, p|α, t〉. (46)

It is important to note that ψα(q, p, t) is a wave function but
not with the content of the usual quantum mechanics state,
when q and p are the eigenvalues of the ancillary operators Q
and P.

The time evolution of the wave function is given by

ψ(q, p, t) = exp
−itH

h̄
?ψ(q, p,0), (47)

From these relations the following equation is derived(using
the usual form for the Hamiltonian, H = h +V (q) = p2

2m +
V (q)),

ih̄∂tψ = (
p2

2m
− h̄2

8m
∂ 2

∂q2 −
ih̄p
2m

∂

∂q
)ψ +V (q+

ih̄
2

∂

∂ p
)ψ; (48)

which is the Schrödinger equation in phase space.
The lagrangian that leads to equation above is given by

L =
ih̄
2
(ψ†

∂tψ−ψ∂tψ
†)+

ih̄
4m

p(ψ†
∂qψ−ψ∂qψ

†)

− p2

2m
ψψ

† +V (q)? (ψψ
†)− h̄2

8m
∂qψ∂qψ

†. (49)
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The association with the Wigner function is given by

fw(q, p) = ψ(q, p, t)?ψ
†(q, p, t). (50)

The wave functions, ψ(q, p), obeys the follow eigenvalues
equation,

H ?ψ(q, p) = Eψ(q, p), (51)

where His the hamiltonian.
This equation is similar to the eigenvalue equation satisfied

by Wigner equation, and we found that fw(q, p) and ψ(q, p)
satisfy the same differential equation.

V. QUARTIC POTENTIAL

A. The quartic hamiltonian

The hamiltonian of the harmonic oscillator potential is writ-
ten by

Ĥ =
1

2m
P̂2 +mω

2Q̂2,

where the position and momentum operators are given by
Eq.(11) and Eq.(12) respectively. The hamiltonian for the an-
harmonic oscillator is given by

Ĥ =
1

2m
P̂2 +mω

2Q̂2 +αQ̂4. (52)

If Q̂ and P̂ are written in terms of annihilation and creation
operators [14], we have

Â =

√
mω

2h̄
(Q̂+

i
mω

P̂), (53)

Â† =

√
mω

2h̄
(Q̂− i

mω
P̂), (54)

and the corresponding hamiltonian is

Ĥ = h̄ω(ÂÂ†− 1
2
)+

h̄2

4m2ω2 (Â+ Â†)4. (55)

The operators Â and Â† satisfy the following commutation re-
lation,

[Â, Â†] = 1, (56)

and define Ĥ0 = h̄ω(ÂÂ†− 1
2 ).

The creation and annihilation operators are applied to the
eigenfunctions of the harmonic oscillator in phase space with
the unperturbated wave functions ψ0(q, p), lead to the follow-
ing relations,

Âψ
(0)
n (q, p) =

√
nψ

(0)
n−1(q, p), (57)

and

Â†
ψ
(0)
n (q, p) =

√
n+1ψ

(0)
n+1(q, p). (58)

The creation and annihilation operators may be written as [14]

Â =

√
mω

2h̄
[(q+

ih̄
2
−→
∂ p)+

i
mω

(p− ih̄
2
−→
∂ q)], (59)

and

Â† =

√
mω

2h̄
[(q+

ih̄
2
−→
∂ p)−

i
mω

(p− ih̄
2
−→
∂ q)]. (60)

B. Perturbative approach

The Schrödinger equation in phase space with quartic po-
tential will be considered in a perturbative approach to first
order. The state function with zero upper index represents the
state function of unperturbed harmonic oscillator.

The unperturbed solutions of the Schrödinger equation in
phase space is given by,

Ĥ0ψ
(0)
n (q, p) = E(0)

n ψ
(0)
n (q, p). (61)

Now we introduced the perturbation V (Q̂) = λ Q̂4, where λ is
a small parameter. If ψn(q, p) is the state function of pertur-
bated system, we have,

Ĥψn(q, p) = (Ĥ0 +λV )ψn(p,q) = Enψn(q, p). (62)

However, if the state functions ψ
(0)
n are known, the approxi-

mate value for ψn and En can be calculate by the perturbative
approach. To first order, suppose that ψn and En can written
as,

ψn = ψ
(0)
n +λψ

(1)
n , (63)

and

En = E(0)
n +λE(1)

n , (64)

where ψ
(1)
n and En is the first order correction for the state

function and the energy respectively.
Thus ignoring the quadratic term in λ , we obtain

(Ĥ(0)
n −E(0)

n )ψ
(1)
n = (E(1)

n −V )ψ
(0)
n . (65)

Now expanding ψ
(1)
n in terms of the state function of the un-

perturbed system we have

ψ
(1)
n = ∑

k
akψ

(0)
k . (66)

Combining these equations, we obtain

∑
k

ak(E
(0)
k −E(0)

n )
∫

ψ
(0)†
m ?ψ

(0)
k dqd p=

∫
ψ
(0)†
m (E(1)

n −V )ψ
(0)
n dqd p

(67)
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However the state functions of the unperturbed system are or-
togonal, i.e. ∫

ψ
(0)†
m ?ψ

(0)
n dqd p = δmn, (68)

so the Eq.(67) can be written by

am(E
(0)
m −E(0)

n ) = E(1)
n δmn−

∫
ψ
(0)†
m V ψ

(0)
n dqd p. (69)

Now, we consider two cases, when m = n and when m 6= n. (i)
For m = n the Eq.(69) give us the first order correction to the
energy, given by

E(1)
n =

∫
ψ
(0)†
n V ψ

(0)
n dqd p = 〈V 〉. (70)

For m 6= n, the Eq.(69) give us,

am =

∫
ψ
(0)†
m V ψ

(0)
n dqd p

(E(0)
n −E(0)

m )
. (71)

Using Eq.(66), we find that

ψ
(1)
n = ∑

m6=n

∫
ψ
(0)†
m V ψ

(0)
n dqd p

E(0)
n −E(0)

m

ψ
(0)
m . (72)

Finally, in the first approximation, the state function ψn for
perturbed system is written as

ψn(q, p)=ψ
(0)
n (q, p)+ ∑

m6=n

∫
ψ
(0)†
m (q, p)V ψ

(0)
n (q, p)dqd p

E(0)
n −E(0)

m

ψ
(0)
m (q, p)

(73)

C. Amplitudes in phase space and Wigner function

In order to calculate the state function of the quartic poten-
tial in phase space. Using the creation and annihilation oper-
ators, Eq.(57) and Eq.(58), with the relations given in Eq.(71)
and Eq.(73), we obtain

ψ
(1)
n (q, p) =

1
8

[√
n(n−1)(n−2)(n−3)

2
ψ
(0)
n−4 +

(√
n(n−1)3

+
√

n(n−1)(n−2)2 +
√

n3(n−1)
)

ψ
(0)
n−2

−
(√

n2(n+1)(n+2)+
√
(n+2)(n+1)3

+
√
(n+1)(n+2)(n+3)2 +

√
n(n+2)3

)
ψ
(0)
n+2

−
√

(n+1)(n+2)(n+3)(n+4)
2

ψ
(0)
n+4

]
. (74)

And the amplitude in phase space for the quartic potential is
written in following form,

ψn(q, p) = ψ
(0)
n +

1
8

[√
n(n−1)(n−2)(n−3)

2
ψ
(0)
n−4

+
(√

n(n−1)3 +
√

n(n−1)(n−2)2 +
√

n3(n−1)
)

ψ
(0)
n−2

−
(√

n2(n+1)(n+2)+
√
(n+2)(n+1)3

+
√
(n+1)(n+2)(n+3)2 +

√
n(n+2)3

)
ψ
(0)
n+2

−
√

(n+1)(n+2)(n+3)(n+4)
2

ψ
(0)
n+4

]
, (75)

where the state function for the unperturbed harmonic oscilla-
tor are well known [14].

The correspondent Wigner function are calculate by the fol-
lowing expression

fw(q, p) = ψn(q, p)?ψ
†
n (q, p). (76)

FIG. 1: Amplitude for quar-
tic potential, n=4

FIG. 2: Wigner function for
quartic potential, n=4

FIG. 3: Amplitude for quar-
tic potential, n=5

FIG. 4: Wigner function for
quartic potential, n=5

FIG. 5: Amplitude for quar-
tic potential, n=6

FIG. 6: Wigner function for
quartic potential, n=6

The behavior of the phase space amplitudes and the respective
Wigner functions are shown in figures (1)- (6).
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VI. CONCLUDING REMARKS

A brief review of derivation of the Schrödinger equation in
phase space from the representations of the Galilei group, us-
ing the star product. The analysis of the quartic potential is
made using a perturbative approach to first order. The cen-
tral point is to obtain the Wigner function without use the
Liouville-von Neumman equation. This suggest that applica-
tion to physical problems in cosmology, gravity and chaos can

be considered in detail. Future developments may concern the
development of the scattering theory in phase space.
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