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The Ergodic Hypothesis is a hypothesis in Statistical Mechanics that relates the microscopic motion of parti-
cles with the macroscopic average, i. e., the observed property. Despite its importance, didactically its unders-
tanding is not easy due to technical issues. Therefore, in this article we propose analogies in order to clarify
some important features of the referred hypothesis. Our starting point is the perception that the same macrosco-
pic property, i. e., the average of the movement, can be calculated by different procedures. After that, we build
the same average in a more convenient way. We do not have as objectives to contemplate advanced implications
of the referred hypothesis. On such cases, some papers will be referenced.

I. INTRODUCTION

In many theoretical contexts, technical sophistication often
blurs the meaning and intuition behind a theory. Besides, the
difficulties that enclosure fundamental questions usually have
an inhibitor effect on curious eyes. Accepting such truth, text-
books’ authors follow the tendencies of technical tutorials,
banning from their pages crucial explanatory steps, which
may possibly impair the proper discernment of a hypothe-
sis. With that concern in mind, we propose some analogies to
help explaining an important topic in Statistical Mechanics:
the Ergodic Hypothesis (EH).

A. Statistical Mechanics

In the last decades of 19th century, great advances were made,
concerning the comprehension of matter structure. Des-
pite the resistance of the energetics’ group 1, the works by
Maxwell, Boltzmann, Gibbs and others were successful on
interpreting matter as composed by the minors entities called
atoms. Under this new perspective, many obstacles needed
to be overcome, and EH appears with singular voice to solve
some problems.

Briefly, the EH states that the temporal average of the mo-
vement of molecules and atoms is equal to the spatial average
(in phase space, see eqs. (1) and (9)). In other words, this
means that a macroscopic property can be interpreted as an
average taken over different data.

Despite the fundamental nature of the hypothesis, its pre-
sentation in many textbooks is underestimated, giving an im-
pression of being either a mere step in mathematical calcu-
lations or even a self-evident conclusion. We mention some
examples: ref. [3] just mentions it. Refs. [4, 5] make some
comments, specially ref. [6] whose dense book about funda-
mentals of Statistical Mechanics has discussions about EH’s
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1 The energeticists were those who disagreed that the matter would be sub-

divided into smaller entities, the atoms. As representatives of this current
of thought include Helm and Ostwald [1, 2].

implications. However, no one emphasizes its intuitive mea-
ning. Other texts about Kinetic Theory of Gases [7, 8] make
use of that meaning without justifying or even commenting
about it. Ref. [9] is an exception that introduces EH to con-
nect micro- and macroscopic scales. In short, even on those
texts that recognizes EH’s fundamental role, its hard to com-
prehend of the reasons that take us to adopt it.

We mention refs. [10–12] as good sources of information,
despite the fact they are high technical level readings. We
may still mention ref. [13] as an example that shows the ac-
tual relevance of this subject, which deals with the Quantum
Ergodic Theorem according to John von Neumann.

II. DESCRIPTIONS OF THE MICROSCOPIC STATE

The description of a physical system, such as an ideal gas
with N particles, is usually carried out in terms of 3N spatial
coordinates q1, . . . ,q3N ≡ q; and the respective 3N conjuga-
ted momenta p1, . . . , p3N ≡ p. We are then considering the
Hamiltonian formalism. We still define a differential volume
of phase space by dω ≡ dq1 . . .dq3Nd p1 . . .d p3N .

Imagine that we intend to calculate an (intensive) macros-
copic property Gobs, where obs means observable, taking the
atomics hypothesis as true. An usual way of trying to extract
a simple and unique value from an infinite number of irregu-
larly moving particles is to properly conceive an average of
the motion (position or velocity) of the particles.

With the aim of testing the validity of the previous proce-
dure, we will perform an experiment. Due to the fact that
any experimental measurement occurs in a finite time τ , the
required average must be evaluated during that interval2 [9].

2 Implicitly, we are considering that the system reaches equilibrium during
the finite time interval τ , otherwise there would be no use in computing
this average. So we focus our attention on studying systems in equilibrium
[14].
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Mathematically, this is translated as,

Gobs = Ḡ(τ) =
1
τ

∫
τ

0
G(q,p; t)dt . (1)

Even if the function G is known, it is impracticable to com-
pute all 6N equations of movement together with their precise
initial conditions. In this way, the temporal average is useless
at getting some information.

How could we obtain Gobs? Is eq. (1) adequate? Is that
the only possible way to calculate the macroscopic measure-
ment?

III. THE CONSUMER AND ITS EXPENDITURES

Imagine that we wish to know the mean daily consumption
(macroscopic property Qobs) of one consumer; we call him
`∗. In this case, we propose to track him during a period of
a month (30 days), after which, we calculate the average. In
mathematical notation,

Qobs = Q̄(d) =
1

30

30

∑
d=1

Q(d) . (2)

We can now suppose that we do not have an entire month
to observe `∗; in fact, we have just one day. How could we
know that average? Would it be possible to know Qobs so far?

If we believe – here is the thesis – that there are many
consumers L with similar profiles of `∗, i.e., a socioecono-
mic group L to which `∗ belongs, we could observe many of
them for just one day, taking notes of their expenditures and
calculating the desired average:

〈Q(`)〉= 1
L

L

∑
`=1

Q(`) . (3)

The family of L consumers sent to shopping is commonly
called “ensemble”. If we take `∗ as one of the many possi-
bilities of the ensemble L, we say that `∗ is a realization of
ensemble [10, 15, 16].

It is obvious that in a certain day the consumer `∗ can per-
form and probably he will, different expenditures from that
performed by the consumer i, which will be different from
those of j, and so on.

In fact, what we are supposing is that the unique consumer
`∗ could perform, in any of the 30 days of the month, the
several expenditures of his pairs, in such way that the average
of the socioeconomic class L taken during one simple day
equals the average of the unique consumer `∗ taken during a
whole month.

Hypothesis :(
L consumers

in just one day

)
≡
(

an unique consumer `∗

during a whole month

)
.

In this way, we change a temporal average Q̄(d) for another
one built on socioeconomic class L, 〈Q(`)〉. The important
fact is that we consider ourselves successful in satisfying our
curiosity about the mean daily consumption of the specific
consumer `∗. Mathematically,

Qobs = Q̄(d) = 〈Q(`)〉 . (4)

IV. EXPANDING THE ANALOGY

The idea above shows our goal: exchanging the average based
on the time evolution of a single agent, for another based on
a set of similar agents.

With this motivation we choose not to hold ourselves in the
class L. Instead of sending the consumers of L to shopping
in just one day, we can – in an abstract way – give life to each
possible expenditures instantaneously, i.e., in a time interval
∆t→ 0. This means we are changing the focus from the class
of consumers L to the expenditures space M and eliminating
the time dependence of the average.

We know that there are an infinity of possibilities of ex-
penditures (from one simple candy from the neighborhood
grocery store to a luxurious car)3, then the sum must be re-
placed by an integral. Besides, it is natural to believe that
buying a simple candy is much more common than buying a
sport car. So we need to assign a probability density f (m) to
the occurrence of each expenditure m of the set M.

In mathematical terms, we now express the mean daily
consumption,

〈Q(m)〉=
∫
M

f (m)Q(m)dm , (5)

and, ∫
M

f (m)dm = 1 , (6)

since f is a probability density.
This procedure allows us to know the same property Qobs

in three different ways,

Qobs = Q̄(d)
∣∣
t = 〈Q(`)〉L = 〈Q(m)〉M . (7)

V. THE ERGODIC HYPOTHESIS

The EH consists in changing the temporal average of eq. (1)
for a spatial average. More precisely, for an average on the
phase space of Hamiltonian formalism.

In this formalism, we express the microscopic state of a
system with just one point in a space of 6N dimensions. Then
instead of tracking a long path of this single point during the
time interval τ and computing the integral in eq. (1), we will
imagine an ensemble of similar points4 and assign to each
portion of that ensemble a probability density fN(q,p; t) that
quantifies the movements in all directions of phase space. Af-
terwards, we integrate the possibilities in all directions to ob-
tain the macroscopic tendency.

Gobs = 〈G(t)〉=
∫

ΩΩΩ

fN(q,p;∆t→ 0)G(q,p;∆t→ 0)dω ,

(8)

3 We should have in mind that the only possible expenditures are those that
characterize the socioeconomic group L.

4 The similarity lies in the fact that all the replicas of the point must corres-
pond to the same macroscopic state.
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where dω is the volume element of a phase space region ΩΩΩ.
We may even drop the explicit time dependence and write it
down,

Gobs = 〈G(t)〉=
∫

ΩΩΩ

fN(q,p)G(q,p)dω . (9)

A. Why choose an average over the phase space?

Think of a landscape with mountains, valleys, cliffs, plains,
rivers, sea, etc. Imagine now that you are with a group of
friends in some point of that landscape, on a valley, for exam-
ple. You are lost and tired, and a question arise: where should
I go? Two main alternatives appears:

i. if everybody walk together as an unique point during
many days in certain direction, after that long period the
group will ponder the displacement, i.e., compute an ave-
rage.

ii. or, individually, each one chooses a direction to go, and
after some hours, return with some information. Taking
this informations as basis, the group will decide which
direction to follow.

In the first alternative, the group goes as unity. During the
displacement, it ponders about the mountains, rivers, cliffs (in
other words, the topography and geometry) of the landscape.
Depending on amount of food and fatigue (energy), the group
will choose an specific route. After some days, it may decide
the trip path.

Look at the second alternative. Imagine that one person
returns after two hours and says that there is a high climb
towards the south. Due to the fact that the group is very tired,
you choose to give less importance (low probability density)
to that information. The same occurs with another informa-
tion: there is a cliff towards the east, which means that direc-
tion is impracticable (null probability density). In short, the
group is planning the steps considering the physical descrip-
tions (topography and geometry), as well as the limitation of
people (energy). And that is done before computing the col-
lective displacement. Ergodic Hypothesis affirms that both
alternatives get the same result.

When we decide to describe a physical system by means of
Hamiltonian formalism, we are taking into account informa-
tion about geometry and energy of the system. The richness

of the underlying mathematical structure [17–20] is the moti-
vation to conceive an average on the phase space.

VI. CONCLUSION

In this article we use analogies to emphasize the phenomeno-
logical side of the Ergodic Hypothesis. The analogy is based
on the fact that a specific macroscopic property of a system
can be calculated from different sets of data.

EH is a product of intense research and debate, and gi-
ves life to a proper branch of Physics and Mathematics. For
example, an interesting result due to Birkhoff [11, 21] esta-
blishes that the validity of EH ensures the result of equal a
priori probabilities (many times taken as a postulate). If we
translate to the context of the proposed analogy, this means
that every product has the same possibility of being purcha-
sed by the consumer, i.e., f (m) of eqs. (5) and (6) assumes
the same value for any m in M, either a bicycle or a luxury
car. From this perspective, we can realize that this result due
to Birkhoff is somewhat counterintuitive, which can lead us
to ponder on the validity of a result so restrictive. On the other
hand, ref. [22] affirms that ergodic theorems and the mentio-
ned postulate are both the main approaches of foundations of
Statistical Mechanics, and one is not necessary for the other;
in addition, it discusses cases where the hypothesis cannot
be applicable. Ref. [23] goes further arguing that “there is
no complete justification for the postulate, even if the ergo-
dic theorems are applicable”. As a final judgment, we note
that the refs. [9] and [12] says that experimental confirmation
is the dominant criteria for either accepting or refuting EH’s
validity.

Finally, refs. [11] and [12] may serve as a next step in
addition to this paper, and may be used for discussing non-
ergodic systems and modern advances of Ergodic Theory.
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