
 

J. of Speech Sci., Campinas, v. 10, e021004, 2021 – ISSN 2236-9740 

 

 
DOI: 10.20396/joss.v10i00.15863 

 

AUTOMATIC IDENTIFICATION OF SYNTHETICALLY 

GENERATED INTERLANGUAGE TRANSFER PHENOMENA 

BETWEEN BRAZILIAN PORTUGUESE (L1) AND ENGLISH (L2) 
 

BORGES, Atos A. S.1* 

RODRIGUES FILHO, Washington Luis P.2 

ROCHA, Aratuza Rodrigues Silva3 

CARVALHO2, Wilson Júnior de Araújo4 

LIMA JR., Ronaldo Mangueira5 

BARBOSA, Fábio Rocha6 

 

1Postgraduate Program in Electrical Engineering – Federal University of Piauí – ORCID: 

https://orcid.org/0000-0002-4135-8864 
2Department of Electrical Engineering – Federal University of Piauí – ORCID: 

https://orcid.org/0000-0002-8604-7015 
3 Faculdade Afonso Mafrense – ORCID: https://orcid.org/0000-0002-1449-1918 
4Postgraduate Program in Applied Linguistics – State University of Ceará – ORCID: 

https://orcid.org/0000-0003-1606-356X 
5Postgraduate Program in Linguistics – Federal University of Ceará – ORCID: 

https://orcid.org/0000-0002-6027-3161 
6Postgraduate Program in Electrical Engineering – Federal University of Piauí – ORCID: 

https://orcid.org/0000-0001-5473-0584 

 

_____________________________________________________________________________  

Abstract: Transfer phenomena between Portuguese (L1) and English (L2) produced by Brazilian learners are well 

documented in the literature. However, the identification and classification of these processes are made mainly through 

transcriptions, a slow and laborious process done by specialized linguists. The rapid identification of these phenomena 

would be of great value for software doing proficiency placement tests and could be used in language schools, distance 

education, computer-assisted pronunciation training (CAPT) or by autodidacts and researchers. The present work 

analyzed possible techniques and tools that can be used in the automatic identification of some transfer processes. 

Data for the some grapho-phonic-phonological transfer were synthetically generated in the Google Translate™ TTS 

system. Then we tested three classification algorithms to perform the identification: k-Nearest Neighbor, Centroid 

Minimum Distance and Artificial Neural Networks. The results indicate that these techniques are of great value for 

Linguistics and for new software applications in language learning. 
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1. Introduction 

Pronunciation is one of the key elements that influence the mastery of a language. Especially in 

the process of learning a non-native language (L2)2, pronunciation is a central concern for those 

who want to communicate effectively. During the learning of a new language, an interphonology 

emerges. Interphonology is a linguistic system different from both that of the native language (L1) 

and of the L2, with both languages influencing such system (1). Students in the process of learning 

an L2 transfer some of their knowledge of the L1 to the new language due to the already 

established structure of the L1, which might jeopardize communication at times. This 

phenomenon, when manifested in speech or oral reading, is called grapho-phonic-phonological 

knowledge transfer (2). The term grapho-phonic-phonological contemplates not only the 

transference of phonetic-phonological knowledge (3) but also the transference of the grapheme-

phoneme relationships of one language to the other (4–6). In the case of this work, we focused on 

the grapheme-phoneme knowledge transfer between Brazilian Portuguese (BP) as L1 to English 

as L2.  

When the leaner finds an unknown structure in the L2, they use strategies to adapt the L2 

to the closest structure already known in the L1. These phenomena can be manifested in many 

ways, including the change, deletion, or insertion of a segment (vowel or consonant), as well as 

changes at the prosodic level, such as changes in word stress, sentence stress, rhythm, and 

intonation. All these processes can cause misunderstandings and problems in communication. 

Therefore, L2 learners must overcome such phenomena in the process of developing proficiency 

and fluency in the new language. 

There are many conditions in which these phenomena are more susceptible or attenuated, 

such as the orthographic depth of the languages (7), time of first exposure (8), formal education 

in the L2 (9), and the proficiency of the learners (10). All these factors might have a role in the 

occurrence of these transfer processes. 

Although there is a vast literature for grapho-phonic-phonological transfer between 

Brazilian Portuguese and English as a Foreign Language (11), there is a shortage of works aimed 

at recognizing and classifying these processes in an automated way. Most studies carry out 

transfer identification through audio transcription, an arduous and costly task done by hand. Only 

two works were found proposing forms of automated identification. The first was a categorization 

of BP speakers by a Self-Organizing Map (SOM) regarding the transfer of stress patterns between 

BP-L1 and English-L2 (12). The second also aimed to identify transfer processes from BP to 

English-L2 of Brazilian students using a Multi-Layer Perceptron (MLP) neural network (13). A 

faster way to identify these processes would be truly valuable for linguists conducting these 

studies. In addition, a system capable of identifying deviations in pronunciation would also be 

useful for language learning software, helping language schools, mobile app developers and 

autodidacts. It has already been shown that these phenomena can even be used to predict the 

scores at the listening section of Brazilians in the TOEIC (Test of English for International 

Communication) (14).  

Therefore, this work sought to investigate a few possibilities available to recognize the 

occurrence of some of these phenomena automatically through software identification techniques. 

Five phenomena related to grapheme-phoneme correspondences were chosen from the literature 

of BP transfer to English-L2: a) the deletion of initial [h] in words beginning with <h>, as in 

‘humorist’ pronounced as [ˈjuməɽɪst] or [ˈuməɽɪst]; b) the deletion of initial [h] with a change of 

 
2 In this paper we do not distinguish ‘foreign language’ and ‘second language’, using the umbrella 

acronym L2 for any type of non-native language. 



 

 

[aj] to [i] in words beginning with <hy>, such as ‘hydrant’ pronounced as [ˈidɽənt]; c) changing 

[aj] to [i] while keeping the pronunciation of initial [h] in words beginning with <hy>, as in 

‘hydrant’ pronounced as [ˈhidɽənt]; d) pronouncing silent <k> with the insertion of an epenthetic 

[i] in words beginning with <kn>, such as ‘knife’ pronounced as [kiˈnajf]; and e) voicing /s/ when 

<s> appears between two vowels, as in ‘case’ pronounced as [kejz]. To approach the problem in 

diverse ways, tests were conducted using three different classification algorithms: k-Nearest 

Neighbor (kNN), Centroid Minimum Distance (CMD) and Artificial Neural Networks (ANNs). 

To collect the data, samples of native-like pronunciation and of BP-influenced pronunciation were 

synthetically generated in Google Translate™ text-to-speech system. 

The first hypothesis we assumed was that the Google Translate™ text-to-speech system is 

able to simulate the grapho-phonic-phonological transfer phenomena. This way it would be 

possible to synthetically compose the dataset needed for the classification without any human 

tests in this first phase. The second hypothesis tested was that even the classic classifiers, such as 

kNN, CMD, and ANNs with simple and fast architectures are able to correctly identify the 

phenomena. If so, it would be possible to create systems capable of doing the identification task 

but still maintaining simplicity and low processing power, ideal for online and mobile applications. 

2. Data collection 

Five widely known transfer phenomena were chosen to be collected in the Google Translate™ 

TTS system. These phenomena are well documented and commonly found in the pronunciation 

of Brazilian beginning learners of English (13, 15). 

The first phenomenon investigated was the deletion of initial [h] in words beginning with 

<h> (henceforth, H-deletion), which corresponds to the deletion of the glottal fricative [h] at the 

beginning of a word. As initial <h> has no corresponding sound in Portuguese, a Brazilian learner 

might produce [i] and [u] in the beginning of ‘hilarious’ and ‘humorist’, respectively. Therefore, 

other 123 similar words were selected to trigger the phenomenon. Another factor that might 

trigger this process is the existence of a silent <h> at the beginning of some English words, like 

‘hour’ and ‘honor’. 

The second phenomenon was the deletion of initial [h] with a change of [aj] to [i] in words 

beginning with <hy> (henceforth, HY-i). As in the previous process, the deletion of [h] occurs 

due to the absence of a sound corresponding to the grapheme <h> in initial position in Portuguese, 

especially in cognate words such as ‘hyper’, ‘hydrant’ and ‘hydrogen’. The reason for vowel shift 

is the fact that the grapheme <y> might be used to represent both [aj] and [i]. 

The third process chosen was only changing [aj] to [i] while keeping the pronunciation of 

initial [h] in words beginning with <hy> (henceforth, HY-hi). The HY-hi process goes in the 

opposite direction of the previous ones concerning the pronunciation of <h>. In H-deletion and 

HY-i processes, there is the deletion of initial [h], but in HY-hi the [h] is pronounced, with only 

a replacement of [aj] by [i], as described above. Since both processes, HY-i and HY-hi, are 

triggered by words beginning with <hy>, the same 150 words were used to test both phenomena. 

The fourth process investigated is the pronunciation of silent <k> with the insertion an 

epenthetic [i] in words beginning with <kn> (henceforth, KN-kin). This transfer process is 

characterized by the pronunciation of [k] when <k> should be silent in words like ‘knife’ or 

‘knickers’. Primarily, this phenomenon occurs because in BP the letter <k> in initial position is 

pronounced, and it is only silent in very few words of English origin, as is the cases of ‘know-

how’ and ‘knock-out’. In turn, the insertion of the vowel [i] is a way for the learner to restructure 

the syllable considering the phonotactics of BP. The 108 words selected for the tests have this 

specific structure to serve as a trigger for the phenomenon. 



 

 

The last process investigated was the voicing of /s/ when <s> occurs between two vowels 

(henceforth, S-z). It is the pronunciation of voiced [z] when the voiceless [s] should be 

pronounced. The voicing occurs in words like ‘basic’, ‘case’ or ‘fantasy’, and may come from the 

rule of pronouncing [z] when <s> is between two vowels in BP, a pattern easily transferred to the 

L2. Therefore, 125 words with <s> between vowels were selected to trigger this transfer 

phenomenon. 

 The corpus of this study was constructed and classified according to word frequency (high 

and low) and type of word (cognates, noncognates and nonwords). These categories can overlap, 

with the same word being classified concerning both its frequency and its type. The words were 

chosen from the Corpus of Contemporary American English (COCA)3, an online and open-access 

corpus of English with more than a billion words from spoken and written language. The COCA 

corpus was also used to define the word frequency criterion, considering fewer than 1500 

occurrences in the corpus as low frequency. Non-words were also incorporated to the study, all 

generated by the authors modifying existing words but still obeying English phonological patterns. 

As the pronunciations in this work were produced by software, only two recordings for each word 

were necessary, one with the effects of the transfer phenomenon, as if pronounced by a Brazilian 

learner, and the other without it, as if pronounced by an English native speaker. A varied quantity 

of words must be used to be able to reach statistical significance. For this reason, a total of 508 

words were used, presented in Table 1, generating a total of 1016 recordings. 

Table 1. Distribution of selected words for the phenomena in each category 

Category H-deletion HY-i/HY-hi KN-kin S-z 
Total in the 

category 

High frequency 48 26 36 61 171 

Low frequency 62 109 57 49 277 

Cognate 69 94 0 69 232 

Noncognate 41 41 108 41 231 

Nonwords 15 15 8 15 53 

Total in the 

process 
125 150 108 125 508 

 

2.1. Google Translate™ TTS System 

To create a software capable of producing human-like speech, Google™ has developed a Text-

to-Speech (TTS) system. The goal of text-to-speech is to generate a naturally sounding speech 

waveform given a text to be synthesized. It can be viewed as a sequence-to-sequence mapping 

problem; from a sequence of discrete symbols (the text) to a real-valued time series (waveform), 

which corresponds to the utterance. This process is designed to mimic human speech production, 

emulating the periodic (vocal cords vibration) and aperiodic (closure, burst frication) components 

present in human voice. The mainstream approach to speech synthesis in the recent woks of 

Google™ is the statistical parametric speech synthesis (SPSS) (16). 

The SPSS paradigm is used together with a set of generative models to perform the 

mapping between the linguistic features extracted from the input text to acoustic features used in 

the speech production. SPSS based on hidden Markov models has grown in popularity over the 

last decade, becoming a popular option used today. This approach has various advantages over 

other techniques for speech synthesis; however, its major limitation is the quality of the 

synthesized speech (17). For this reason, recent researchers at Google™ have proposed the use of 

 
3 https://www.english-corpora.org/coca/ 



 

 

neural networks to perform the mapping between linguistic features and acoustic features (Tokuda 

and Zen, 2016; Tokuday and Zen, 2015; Zen et al., 2013; Zen et al., 2016). 

In 2017, about 1/3 of all languages in Google’s TTS options already used Recurrent Neural 

Networks (RNN) as acoustic models and almost all options of languages in Android mobile 

devices already used RNN-based TTS systems (22). Thus, it is possible to state that the Google 

Translate™ TSS structure mimics the human brain structure. The mapping of linguistic features 

to acoustic features using a parallel-distributed system is remarkably similar to the human reading 

process in the brain. Several works have demonstrated that it is possible to emulate parts of the 

human brain responsible for language processing using neural networks (23–25). Therefore, the 

tool can be seen as a connectionist simulation of the human brain processing language. 

The fact that Google Translate™ TTS systems show deviations in the pronunciation when 

words that are not part of the training lexicon are presented is recognized and the company 

regularly publishes articles that develop techniques to avoid such situations (26, 27). Therefore, 

it is plausible to consider the tool capable of simulating the transfer processes that occur in humans 

learning a new language. In these cases, the system behaves as an adult learner of a foreign 

language in the early stages, adapting patterns already known by their neural network (the brain 

in the case of the learner), producing L2 forms that have undesired L1 characteristics. 

To formally test the ability of a TTS system based on ANN to simulate transfer phenomena, 

we performed the test with the Google Translate™ audio option. This tool is free, simple, and 

available online in almost the entire world. To collect the samples, we selected Brazilian 

Portuguese as the input language and English as the output language, and the English words were 

written in the tool’s inbox.  Figure 1 illustrates this procedure with the word ‘hygiene’. 

 
Figure 1. Illustration: Method for simulation of the transfer phenomena on the Google Translate™ 

platform 

 This way, the program generates the voice production of the English word using a system 

adapted for BP, thus producing some of the transfer phenomena observed in humans. After 

selecting the English language for the output box, which would correspond to the translation, the 

English word itself appears. The audio was also collected in this option to acquire the control 

native-like pronunciation of the word. The recordings were made using the Audacity™ software 

version 2.4.2 with the Microsoft Sound Mapper input mode, recording the digital productions 

directly from the operating system audio driver. All the data in this research were collected in 

August of 2018. 

Although Google™ is transparent about the general principles of the algorithms used on 

the software, the Google Translate™ TTS system might be updated prior to the publication of 

this paper. This can be a limitation for reproducibility since some of the phenomena will no longer 

be produced by the BP voice due to improvements. Therefore, we made the recordings acquired 



 

 

in 2018 and used in this study publicly available in a remote repository4 as an open science effort. 

The recordings can be downloaded and verified by the peers. This is not a limitation to the study 

itself since its ultimate goal was not to test Google Translate™ TTS system, but rather to 

investigate the three classification algorithms in identifying the phenomena. The use of TTS-

generated audio was simply a solution to work with reliable and easily acquired audio, but the 

next logical step of this research is to use actual learners’ and native speakers’ recordings as input.  

2.2. Extraction of Acoustic Cues 

To collect the samples produced by Google Translate™, we used the open-source audio software 

Audacity (version 2.1.2). The productions were recorded at 44.1 kHz (standard) in Wave 32-bit 

float PCM. However, raw speech cannot be directly used in the classification algorithms because 

it contains thousands of samples, which would make their processing slow, and polluted with 

noise, making it extremely difficult to extract knowledge from it. The solution is to represent the 

speech numerically with a set of coefficients obtained from the application of mathematical 

techniques, dividing the speech signal into multiple frames. To calculate this numeric 

representation, we opted to use the PRAAT software (version 6.0.21). To test different types of 

representation, we chose two descriptors: the mean of Formant Frequency (FF) and the mean of 

the Fundamental Frequency (f0). 

The sound produced in speech comes from the vibration of the vocal cords. This vibration 

is caused by the air flow from the lungs, creating pressure waves that propagate through the air, 

oscillating the air particles in a pseudo-periodic behavior. The number of “cycles” in a wave form, 

or the number of complete repetitions in the pseudo-periodic wave, is known as the Fundamental 

Frequency. This frequency is closely related to the number of times the vocal folds have opened 

and can be controlled by the speaker using the muscles around the vocal folds. Considering this 

mechanism, the fundamental frequency can be considered an indicator of vibration on the vocal 

cords (voicing). 

Beyond its use in speech synthesis, fundamental frequency has been extensively used in 

speech recognition, speaker identification and speech understanding. The application in multiple-

regression Hidden Markov Models as an auxiliary feature for word recognition can reduce error 

by 20% (28). The f0 can be crucial for automatic speech processing in tonal languages such as 

Mandarin, where an effective speech recognizer needs to be able to recognize the 5 tones in 

addition to the usual phonetic inventory of the language (29). Widely used as a cue in speech 

recognition, f0 was chosen in this work for the proposed identification task, helping to identify the 

phenomena that are closely related with sonorization. 

Furthermore, when a vowel is produced, it is usually characterized by different resonant 

frequencies that vary according to their production. The sound produced by the vocal cords passes 

through the vocal tract, which functions as a filter. The pressure wave propagates through the 

vocal tract, where it resonates with greater or lesser intensity at different harmonic frequencies. 

The wave with maximum resonance is the one whose points of minimum and maximum vibration 

coincide with the length of the vocal tract. In the literature of speech production, the frequency of 

those waves of maximum resonance are denominated formants. In this study we used the first two 

formants, F1 and F2 (12, 13). It is plausible to predict that these formants, F1 and F2, carry 

information that characterizes the vowels produced by the Google Translate™ TTS system in a 

level of detail that it is possible to identify the transfers from BP to English-L2, since F1 and F2 

are used by the human brain to determine vowel spectral quality and distinguish between vowels 

(F1 is related to vowel height and F2 to tongue advancement). 

 
4 https://github.com/atosborges00/ggTTS_paper 



 

 

PRAAT presents the oscillogram and spectrogram of audio files. This way, it is possible to 

select, in each word, the exact region where each researched phenomenon occurred. This specific 

region was selected, cut, and saved in Wave format, resulting in a file referring to the exclusive 

region of incidence of transfer processes. The objective was to extract both f0 mean and the mean 

of F1 and F2 from the selected region. Although two different methods are used to obtain these 

values, the same audio file was used for both extractions. 

 
Figure 2. Illustration: Example of analysis of the word ‘humor’ produced by the TTS system. The 

arrows show the production of [u] on the left and the production of [‘hju] on the right. 

To extract the f0 from the speech, PRAAT provides the option of outputting the frequency 

values with a collection of functions designed to implement speech analysis algorithms. In the 

case of fundamental frequency, the “To Pitch (ac)” command performs an acoustic periodic 

detection on the basis of an adapted autocorrelation method (30). 

PRAAT automatically sets the f0 value to “undefined” when the autocorrelation method 

cannot find a satisfactory value of correlation inside the typical values of fundamental frequency. 

As a mathematical strategy, we chose to switch this value to zero. With this change, the mean 

value of the words with unvoiced sections will differ from those without voiced sections. The 

classification algorithms can only rely on mathematical differences between the productions, and 

the addition of zeros to the mean during the unvoiced sections will make the differences in the 

speech production explicit to the classification algorithms by decreasing the mean value.  

To obtain the mean of F1 and F2, PRAAT provides the “To Formant (burg)” command for 

conversion of audio objects to formant objects. This command first resamples the sound to a 

sampling frequency of twice the value of the parameter Maximum Formant and computes the 

LPC coefficients in the audio. The formant values are obtained through the poles that this 

algorithm computes. 

 It is important to warn that this methodology might result in non-typical values of formant 

frequencies. Normally the formant frequencies are extracted from the central region of the vowel. 

However, the selected region to study the phenomena was extended beyond the vowel. As the 

formant frequencies are obtained from the poles found in the LPC coefficients, they can be found 

in any region of speech, not exclusively in vowel production. Although the FF values in non-

vowel regions are disperse and inconsistent, these values are useful to differentiate the mean value 

of the formant frequencies by the algorithms, moving the mean away from other observations 

without consonants. Even if this method results in implausible values for vowel production due 

to the influence of the FF found in consonantal regions, these differences will be evident to the 

classification algorithms, resulting in better separation of the groups. 

 



 

 

3. Simulation Results 

After the words produced by Google Translate™ were stored, we analyzed the productions and 

manually classified samples as phenomenon and no-phenomenon. As the words in this study were 

selected to trigger a clear manifestation of the phenomena, the identification task was trivial and 

performed by the authors. The recordings available in the remote repository5 clearly indicate that 

when the pronunciation was BP-accented, it was heavily accented, with a clear production of the 

target phenomenon. The results indicate that the software indeed produces the transfer phenomena 

hypothesized, though not in all words. Words that trigger the processes in humans also triggered 

the transfer between the languages in a software using a neural network.  

From the words selected for the H-deletion process, 80% triggered the transfer process in 

Google Translate™ TTS system. From the words selected for HY-i and HY-hi processes, 80% 

presented the HY-i process and only 10% presented the HY-hi process. The KN-kin process 

occurred in 41.67% of the words produced by the simulation. The S-z process occurred in 84% 

of the words selected for the study. Table 2 presents the frequency of occurrence of the 

phenomena in the categories of words selected for each process. 

Table 2. Occurrence of the transfer processes in the samples of the BP  

Process 

High 

frequency 

(%) 

Low 

frequency 

(%) 

Cognates (%) 
Noncognates 

(%) 

Nonwords 

(%) 

H-deletion 87.50 82.26 94.20 68.29 46.67 

HY-i 57.69 85.32 81.91 75.61 80.00 

HY-hi 7.69 10.09 8.51 12.20 13.34 

KN-kin 8.33 52.63 - 35.48 80.00 

S-z 72.13 95.92 88.41 73.17 93.34 

From these results, it is possible to draw a series of conclusions regarding the occurrence 

of the phenomena in the TTS algorithm. For the H-deletion process, there is a clear tendency for 

the occurrence in cognate words when compared to noncognate words, an effect also observed, 

though slightly more mildly, in the HY-i phenomenon. This effect was not observed in the HY-

hi or S-z phenomena, where neither presented significant differences. 

Concerning word frequency, only the H-deletion process had more occurrence of the 

transfer phenomenon with the high frequency words; all other processes occurred more frequently 

in the low frequency words. The HY-hi process was the least frequent from the phenomena tested 

with the TTS system. Although they still occurred, the HY-i process was more dominant in the 

words capable of triggering both transfer processes. The shortage of samples for this process was 

a problem discussed later in the identification results section. 

The HY-i, S-z and KN-kin phenomena presented a high level of occurrence with the 

nonwords. The unexpected result is the low occurrence of the H-deletion process in nonwords. 

The overall incidence of the HY-hi process was low, which also accounts for its low occurrence 

in nonwords. However, there is another unknown factor in the TTS algorithm influencing the 

production of the nonwords intended to trigger the H-deletion process. 

In general, the results were compatible with the data already observed in humans (13). The 

higher incidence in cognates and low frequency words have been registered with beginning 

students; therefore, the neural networks behind the TTS system in Google Translate™ presented 

similar transfer patterns when exposed to similar inputs. 

 
5 https://github.com/atosborges00/ggTTS_paper 



 

 

To better visualize the dataset and observe the differences between the pronunciations, we 

used F1 and F2 values from the regions of interest in the audio collected in BP and English to plot 

a visual representation of the productions. In the graphs in figure 3, we plotted the native-like 

pronunciation produced by the English option, as well as the productions from the BP option that 

produced the phenomenon and those without the phenomenon. 

 
Figure 3. Dispersion plot: Distribution of Formant Frequencies in the productions of the simulated 

phenomena 

It is possible to notice that the words are clustered within similar pronunciations. In the H-

deletion process, it is possible to notice the formation of clusters around some formant values. 

These clusters are caused by the vowels that are pronounced when the initial [h] is deleted, each 

vowel presenting characteristic formant frequencies. The native-like pronunciation, on the other 

hand, presents the [h] sound, resulting in different FF means. 

The agglomeration in the HY-i process is noteworthy, providing information of the vowel 

[i] being produced. The HY-hi process is in an intermediate region between pronunciations, with 

the production of the initial <h>, but changing [aj] with [i]. 

The KN-kin phenomenon presented low variation in the average of the second formant 

frequency, while the native pronunciation presents a variation of values approximately from 100 

Hz to 3000 Hz. The opposite occurs with the mean of first formant, with a wide range of 

frequencies for the pronunciation with the transfer phenomenon. This behavior may be due to the 

appearance of antiformants in the production of the consonant <n>, which appear when the nasal 

cavity is involved in the sound production. 

In the S-z plot we observe the agglomeration of words that present [s] sonorization, while 

samples without the phenomenon show greater dispersion. The pronunciation of the consonant 

[z] involves the vocal cords; therefore, there are resonant frequencies that can be interpreted as 

formant frequencies by the extraction algorithm. This is a good characterization of the 

phenomenon, with a distinction between the native-like pronunciation and that with the 

phenomenon, even with no vowels directly involved. 

                

       

   

    

    

    

    

    

 
 
  
 
  

                   

       

                  

               

            

       

    

    

    

    

 
 
  
 
 
 

                       

       

                  

         

          

                

       

 

    

    

    

    

 
 
  
 
  

               

       

                  

           

             

       

    

    

    

    

    

    

 
 
  
 
  

            

       

                  

        



 

 

The distribution of mean f0 values obtained in the simulations can be visualized in Figure 

4, presenting the distribution for native-like pronunciations, as well as the mean values obtained 

in the BP audio option with and without the transfer processes. 

 
Figure 4. Boxplot with violin plot: Distribution of mean f0 values in the utterances of the 

simulated phenomena 

From the graphs presented, it is possible to draw a series of conclusions about the 

phenomena’s behavior. In all processes, except for KN-kin, the phenomena were characterized 

by the concentration of mean f0 values, indicating the presence of well-defined fundamental 

frequencies due to the voiced nature of the section, while samples from native-like pronunciations 

were more dispersed. The HY-i and HY-hi processes were also concentrated around different 

mean values, reinforcing the differences in the manifestations of the two processes. In KN-kin, 

the same reasons caused the mean f0 concentration; however, with native-like samples presenting 

well-defined fundamental frequencies. 

These contrasts in the distribution of mean f0 highlight the differences between the 

productions, adding more evidence to the hypothesis of transfer process simulation and providing 

useful information to be used in the identification algorithms. These dynamics can be useful for 

the algorithms searching for mathematical disparities between the with-phenomena and the 

native-like pronunciations. 

 

4. Identification Techniques 

After the collection of the samples and extraction of f0 mean, and F1 and F2 mean, three 

supervised algorithms were implemented to perform the automatic identification of the 

phenomena. The following diagram illustrates the process. 

                                       

   

   

   

   

   

   

  

   

   

   

   

   

 
  

  
  

                                          

   

   

   

   

  

   

   

   

   

 
  

  
  

                                  
 

   

   

   

   

   

  

   

   

   

   

   

 
  

  
  

                                

   

   

   

   

  

   

   

   

   

 
  

  
  

                                                                

                                                  



 

 

 
Figure 5. Flowchart: Construction and validation of the proposed identification system 

As the three algorithms are supervised, the manually classified datasets were divided into 

a training subset (or memory subset) and a testing subset. The training subset is used as reference 

to the algorithm, presenting enough information about the behavior of the samples to allow for 

learning and generalization. With the training process completed, all three classification 

algorithms were tested with the testing subset. The samples of the training subset were never 

presented during the testing process or added in the reference data. This way we could test the 

accuracy and generalization levels of the models for new samples. 

 

4.1.  k-Nearest Neighbor 

The idea behind the KNN method is simple. The most frequent class among neighbors closest to 

the sample to be classified is assigned to it (31). In other words, the classes of the nearest 

neighbors of the new sample are computed and the more common class is probably the class of 

the new instance. 

Mathematically, it can be defined as: Let 𝑉 =  {𝑣1, 𝑣2, … , 𝑣3} be a set of training patterns 

and 𝐶1, 𝐶2, … , 𝐶𝑝 the classes in which the set 𝑉 was divided. The rule of the nearest neighbor can 

be defined as: 

𝑖𝑓 𝑑(𝑣, 𝑣𝑎)  ≤  𝑑(𝑣, 𝑣𝑗), 𝑗 = 1,2 … 𝑛 𝑎𝑛𝑑 𝑣𝑎  ∈  𝐶𝑖 𝑡ℎ𝑒𝑛 𝑣 ∈  𝐶𝑖 

The distance 𝑑(𝑣, 𝑣𝑗)  can assume different forms, e.g. Minkovski distance, Euclidean 

distance, Mahalanobis distance (32). The KNN algorithm computes the distance not only for the 

nearest neighbor, but also for the k nearest neighbors. The KNN algorithm performs the 

classification of the new samples according to the following pseudo-code (33): 

Algorithm 1 k-Nearest Neighbors 

Input: Dataset with unknow samples to be classified with dimensions (𝑚, 𝑛). 

Output: Vector with the 𝑚 classifications of the samples from the dataset.  

1: for i = 1 : number test samples do 

2:  Compute the Euclidean distance between the current vector 𝑣𝑖  and 

 other vector from the reference dataset defined as: 

 𝑑(𝑣𝑖 , 𝑣𝑗) = √∑(𝑥𝑖ℎ − 𝑥𝑗ℎ)2

𝑛

ℎ=1

 (1) 

 

3:  Sort the vectors by the distance and store in 𝑣∗ = {𝑣1
∗, … , 𝑣𝑁

∗ } 

4:  Select the nearest k instances: 𝑣∗[1: 𝑘] 

5:  Determine the class of the sample as the most frequent class among the k 

nearest neighbors 𝑣∗[1: 𝑘] 

6: end for 



 

 

To avoid ties in the number of neighbors in each class, it is recommended that the k be odd. 

The optimum number for k must be obtained through tests. 

Several works have already used this algorithm and its variations to perform all kinds of 

classification. The popularization of KNN happened in the 90’s with some new applications of 

the algorithm (33). Since then, several works have used the algorithm for various types of 

identification or classification, including recognition of aspects human language (34–36). 

 

4.2.  Centroid Minimum Distance 

The CMD algorithm works based on a basic principle about the dataset. The classification is based 

on the distances from the unknown samples to the center of mass of the already known classes. If 

the new sample is near to the center of mass of a class, also known as centroid, there is a high 

probability that the sample belongs to that class. The following pseudo-code demonstrates the 

steps of the algorithm. 

Algorithm 2 Centroid Minimum Distance 

Input: Dataset with unknow samples to be classified with dimensions (𝑚, 𝑛). 

Output: Vector with the 𝑚 classifications of the samples from the dataset. 

1: for i = 1 : number of new samples do 

2:  Find the center of mass 𝑚𝑗 of each class 𝜔𝑗 with 𝑁𝑗 elements defined as: 

 𝑚𝑗 =
1

𝑁𝑗

∑ 𝑥𝑘

𝑥∈𝜔𝑗

 (2) 

with 𝑘 = 1, 2,…, 𝑁𝑗 

3:  Compute the Euclidean distance between the current vector vi and the center 

of mass of all classes in the data set defined as: 

 𝑑(𝑣𝑖 , 𝑚𝑗) = √∑(𝑥𝑖ℎ − 𝑚𝑗ℎ)2

𝑛

ℎ=1

 (3) 

4:  Sort the vectors by the distance and store in 𝑣∗ = {𝑣1
∗, … , 𝑣𝑁

∗ } 

5:  Determine the class of the sample as the class of the closest center of mass. 

6: end for 

 

The simplicity of this method is an important advantage for the implementation and 

universalization of the algorithm. It does not require huge processing power, making the 

implementation possible in most devices. It was already used in the identification of species of 

plants (37) and types of skin cancer (38). 

 

4.3.  Artificial Neural Networks 

An artificial neural network is a system composed of ordered neurons in layers interconnected 

through synaptic weights. These synaptic weights ponder the connection between two neurons, 

or between an input and a neuron assuming a higher value according to the influence of that 

connection to the output of the network. ANN has input nodes that receive stimuli from the 

external medium and output neurons that provide the network response. Usually, a layer between 

the input and output neurons is used, known as the hidden layer. The use of the hidden layer 

structure enables ANN to solve non-linearly separable problems, approximating a function f: I →

 O, I ⊆  Rn, O ⊆  Rm where I is the training set and O is the target set. The neural network used 

in this research has a Multi-Layer Perceptron (MLP) architecture. 



 

 

The term “learning” for an ANN is the act of establishing the output of the network by 

presenting a set of examples during the training stage. In this step, the adjustments of the synaptic 

weights occur to obtain the relations between input and output. In supervised learning (type of 

learning used in this work), the presented data patterns contain information about the stimuli 

applied in the input and the desired output in the last layer of the network. The precision of the 

model built by the network must be constantly measured. The Mean Square Error between the 

expected value 𝑑𝑘 and the output of the neurons 𝑦𝑘 is defined as: 

 𝜀𝑚𝑠 =
1

2𝑁
∑ ∑[𝑑𝑘(𝑡) − 𝑦𝑘(𝑡)]2

𝑀

𝑘=1

𝑁

𝑡=1

 (4) 

where 𝑁 is the number of training samples, 𝑀 is the number of neurons in the output layer and 𝑡 

is the number of the current iteration. 

The mean square error must be computed in each epoch and used to perfect the model 

through a training algorithm. The Levenberg-Marquardt algorithm was applied to perform this 

error minimization. This algorithm is defined as: 

 𝒘(𝑝 + 1) = 𝒘(𝑝) − 𝑳−1𝑱𝑇(𝒘)𝒆(𝒘) (5) 

where 𝒘 is the representation of the weights, 𝑱 is the Jacobian matrix, 𝒆 is the vector containing 

the errors and 𝑳: 

 𝑳 = 𝑱𝑇(𝒘)𝑱(𝒘) + µ𝑰 (6) 

with µ being a scalar known as regularization constant and 𝑰 the identity matrix. When µ is close 

to zero, the algorithm behaves similarly to the Gauss-Newton method for minimization. However, 

when µ  assumes a high value, the behavior is close to the Back-Propagation algorithm. To 

summarize, the algorithm sequence is presented as: 

Algorithm 3 Multi-Layer Perceptron ANN  

Input: Dataset with unknow samples to be classified with dimensions (𝑚, 𝑛). 

Output: Vector with the 𝑚 classifications of the samples from the dataset. 

1: for t = 1 : maximum number of epochs do 

2:  Computes the feedforward propagation to obtain the output 𝑑𝑘(𝑡) for each 𝑘 

3:  Computes the mean square error 𝜀𝑚𝑠 for all 𝑘 samples 

4:  Adjust the 𝒘(𝑝 + 1) weights by the Levenberg-Marquardt rule 

5: end for 

6: Computes the feedforward propagation to obtain the final classifications 

This type of double-layered neural network with iterative training is called Multi-Layer 

Perceptron Artificial Neural Network. Its applications to speech processing are well stablished in 

the literature, with demonstrated accuracy and generalization capabilities (13). 

 

5. Identification Results 

To evaluate the identification performance, we validated the results with a score computed using 

precision and recall measures. This score is called the F1-score (“F” coming from F-score in 

statistics, not to be confused with first formant values) and uses precision and recall measures, 

both defined as:   

• Precision: defined by the proportion of true positives in relation to the total number of 

samples predicted to be in that class, including false positives. Mathematically, it is 

defined as the number of true positives (𝑇𝑃) divided by the sum of true positives and false 

positives (𝐹𝑃). 



 

 

 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 

• Recall: defined by the proportion of true positives in relation to all samples that in fact 

belong to that class, including false negatives. It is defined as the number of true positives 

(𝑇𝑃) divided by the sum of true positives and false negatives. 

 

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

The F1-score is then calculated as the harmonic mean between precision and recall. 

 
𝐹1 =

2𝑃𝑅

𝑃 + 𝑅
 

(9) 

In summary, the results correspond to the average F1-score for each of the 50 iterations 

using randomized holdout for training, cross-validation and testing subsets. The F1-score ± 1 

standard deviation for the three algorithms is distributed in Table 3, presenting the performance 

in the test sets using both mean f0 and the mean of the first two formant frequencies. 

Table 3. F1-scores obtained by the algorithms in each phenomenon studied. 

Algorithm 
Processes 

H-deletion HY-i/HY-hi KN-kin S-z 

kNN 0.9459 ± 0.0234 0.8039 ± 0.0958 0.9341 ± 0.0368 0.9578 ± 0.0223 

CMD 0.9342 ± 0.0248 0.8848 ± 0.0401 0.8774 ± 0.0443 0.9356 ± 0.0293 

ANN 0.9437 ± 0.0254 0.7729 ± 0.1221 0.94044 ± 0.0334 0.9450 ± 0.0250 

The results presented by the three algorithms were in general satisfactory for the 

identification goal. The differences in performance for the techniques were expected and the best 

results are highlighted. For the H-deletion process the ANN and kNN showed similar results, both 

providing a high level of accuracy and precision for the identification and separation of native-

like samples from samples with the phenomenon, followed closely by the CMD algorithm. The 

ANN also showed good performance for the KN-kin process, followed by the kNN algorithm, 

which presented results within the error margins. 

The CMD algorithm presented the best performance for the HY-i/HY-hi processes, with a 

noticeable advantage. These two processes were a challenge for the algorithms due to the shortage 

of samples for the HY-hi phenomenon. The results presented in the Simulation Results section 

showed that the HY-hi process has formant values in the middle region between HY-i and native 

samples. Both the decision frontiers of the ANN and kNN algorithms were heavily influenced by 

the surrounding samples, while the CMD provided a fixed-point centroid independent from the 

samples around it, tracing a better indication of the region where the HY-hi samples were 

supposed to be. 

In the S-z processes the three algorithms presented similar results, with kNN having the 

highest F1-score but showing no significant advantages for the other classifiers. The distribution 

of formant frequencies for this process did not provide any advantage in the identification strategy 

for any of the algorithms, all presenting high levels of accuracy and precision in identification. 

 



 

 

6. Conclusions  

After the evidence presented by the results, a series of conclusions about the three initial 

hypotheses could be drawn. The first hypothesis assumed was that the Google Translate™ text-

to-speech system is able to simulate the grapho-phonic-phonological transfer phenomena. For this 

investigation, the collected data suggest that it is in fact possible to simulate the five proposed 

transfer phenomena. The frequency of occurrence differed for the phenomena and for different 

categories of words, but all the investigated processes were present at some level in the synthetic 

productions of the TTS algorithm6. 

For the second hypothesis, regarding the identification problem, the results indicated that 

ANNs, CMD and kNN can identify the transfer processes produced by the TTS algorithm using 

the audio descriptor with high levels of accuracy and precision, providing ways to automatically 

identify the five processes with confidence. The CMD algorithm revealed to be especially 

efficient in identifying the HPS processes. The challenge with the low number of samples was 

overcome by the CMD algorithm with a robust identification to surrounding samples of more 

dominant classes. We could not determine which algorithm had an overall best performance, as 

the differences in the results were mostly within the error margin. 

The results are a proof-of-concept about the usage of algorithms with low computational 

complexity to identify the transfer phenomena in oral speech, an achievement made possible by 

the use of prior knowledge about the processes and what patterns emerge when a transfer 

phenomenon occurs. However, application in human speech production by L2 learners still needs 

to be tested to assure this method as a viable option for developers designing Computer Assisted 

Pronunciation Training software. The technique also needs to improve the acoustic cues 

extraction, automatically selecting the region of interest for a real-time classification. 

It is also necessary to expand the investigation with more phenomena and to acquire a 

greater number of samples for each process investigated. Expanding the number samples and 

testing new phenomena with human-generated audio will provide new information for the 

development of a simple and efficient identification software. Further investigation can provide 

significant new information and ideas not only for software development but also about the 

phenomena themselves. 
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