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Abstract: Speech is segmented into intonational units delimited by prosodic boundaries. This segmentation is 

claimed to have important consequences for syntax, information structure and cognition. This work aims both to 

investigate the phonetic-acoustic parameters that guide the production and perception of prosodic boundaries, and to 

develop models for automatic detection of prosodic boundaries in Brazilian Portuguese male monological 

spontaneous speech. Two samples were segmented into intonational units by two groups of trained annotators. The 

boundaries perceived by the annotators were tagged as either terminal or non-terminal. A script was used to extract 

111 phonetic-acoustic parameters along the speech signal in both a rightward and a leftward window around the 

boundary of each phonological word. The extracted parameters comprise measures of (1) Speech rate and rhythm; 

(2) Standardized segment duration; (3) Fundamental frequency; (4) Intensity; (5) Silent pause. The script considers 

as prosodic boundaries positions at which at least 50% of the annotators indicated a boundary of the same type. A 

training of models composed by the parameters extracted by the script was developed; these models were then 

improved heuristically. The models were developed from the two samples considered separately and from the joined 

samples dataset, both using non-balanced and balanced data. A Linear Discriminant Analysis algorithm was adopted 

to produce the models. The models for terminal boundaries show a much higher performance than those for non-

terminal ones. In this paper we: (i) show the methodological procedures; (ii) analyze the different models; (iii) 

discuss some strategies that could lead to an improvement of our results. 
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1 Introduction 

Speech is prosodically segmented into intonation units determined by prosodic boundaries. 

These units can be functionally analyzed according to different theoretical perspectives, be they 

syntactic, pragmatic or cognitive (Cooper and Paccia Cooper, 1980; Selkirk, 2005; Halliday, 

1965; Cresti, 2000; Szczepek Reed, 2012; Chafe, 1994; Croft, 1995; Bybee, 2010). However, 

prosodic boundaries can be also studied per se (Barth-Weingarten, 2016), independently of the 

theoretical perspective from which the units are observed, since these boundaries are clearly 

perceivable by listeners.  

In some works, the authors investigate the opposition between presence versus absence of 

perceived prosodic boundary (Mo et al., 2008; Park, 2002; Croft, 1995; Maschler, 2009), that is, 

the perceived prosodic boundaries are not differentiated and are treated equally. An alternative 

view suggests that prosodic boundaries vary gradiently (Byrd and Saltzman, 2003; Pijper and 

Sanderman, 1994; Ladd, 1988). Other works distinguish boundaries in terms of different levels 

of perceptual strength (Simon and Christodoulides, 2016; Reichel and Mády, 2013; Wightman 

et al., 1992; Barbosa, 2006; Barbosa, 1994; Tabain, 2003; Tabain and Perrier, 2005; 

Krivokapić, 2007; Mertens and Simons, 2013). However, among the different authors who 

distinguish different strenghts of boundaries, there is a clear disagreement about the number of 

possible levels of force by which boundaries can be produced and perceived. Some authors 

simply distinguish between strong and weak boundaries (Simon and Christodoulides, 2016; 

Reichel and Mády, 2013), while others believe that it is possible to individualize more than two 

levels of strength (Wightman et al., 1992; Barbosa, 2006; Barbosa, 1994; Tabain, 2003; Tabain 

and Perrier, 2005; Krivokapić, 2007). 

Perceived prosodic boundaries by listeners also can be associated with the perception of 

conclusion or continuation of the intonation unit, showing an agreement often higher than 0.8, 

according to several kappa tests (Danieli et al., 2004; Mello et al., 2012). In general, the first 

type is called a terminal boundary (TB) and the second one, a non-terminal boundary (NTB). 

This is the perspective adopted here as a departure hypothesis. 

Some of the acoustic phenomena that signal boundaries are known thanks to many studies 

of lab or read speech (Price et al., 1991; Blaauw; 1994), and are sometimes tested in radio 

corpora (Ostendorf et al., 1995). The main ones, commonly considered in the literature, are 

silent pause, pre-boundary lengthening, reset of fundamental frequency (f0) and a remarkable 

change in speech rate, intensity or f0 variation rate (Cruttenden, 1997; Crystal, 1969; Du Bois et 

al., 1992; Du Bois, 2008; Kelly and Local, 1989; Amir et al., 2004; Mo, 2008; Blaauw; 1994). 

However, other aspects are involved in the understanding of the set of acoustic correlates that 

signal prosodic boundaries. Among them we can cite at least the specific language and the 

speech style. Gender, diastratic factors and even individual variability may play a role as well 

(Barth-Weingarten, 2016; Barbosa and Raso, 2018; Izre’el et al., forthcoming). 

This work aims to investigate the acoustic-phonetic parameters that are involved in the 

production and guide the perception of prosodic boundaries, based on the hypothesis that they 

can initially be divided between two macrotypes: boundaries marking conclusion (TB) and 

boundaries marking continuation (NTB). It also aims to develop automatic models for detecting 

prosodic boundaries in Brazilian Portuguese spontaneous speech. The models shown here 

consider two related criteria: the acoustic-phonetic parameters automatically extracted from the 

sound signal and the perception of trained annotators to perceive TB and NTB. This means that 

human perception is assumed to be the goal that the model should reflect. So far, tools for 

automatically detecting TB and NTB in spoken corpora of spontaneous speech are not available. 
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This paper briefly presents the methodology and the results reached so far by the 

research. It also analyzes these results and propose possible strategies for future steps. 

 

2 Data and data treatment 
 

 

2.1 Data 

The full data set comprises two samples of monological male spontaneous speech excerpts, as 

can be seen in Table 1. Each sample includes seven excerpts extracted from the C-ORAL-

BRASIL I corpus (Raso and Mello, 2012) and from two sections of C-ORAL-BRASIL II (Raso 

et al., forthcoming), with on average 190 words. The excerpt taken from the C-ORAL-BRASIL 

I represents natural informal monological spontaneous speech. The other two excerpts are taken 

from the sections media and formal speech in natural context
1
 of C-ORAL-BRASIL II. 

 

Table 1: Sample description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Data treatment 

The excerpts were segmented into intonation units by two groups of trained annotators. The 

annotators were previously trained to perceive and annotate prosodic boundaries. The first 

group, who annotated sample I, includes 14 annotators; the second one, who annotated sample 

II, includes 19 annotators
3
.  

Each annotator received an audio file with the excerpts and their orthographic 

transcription without any further annotation; their task was to annotate the two main types of 

boundaries following their perception using a simple slash symbol (/) to indicate a NTB and a 

double slash to indicate a TB (//). Disfluencies were marked with (+), but they were excluded, 

since they were considered non-planned boundaries. The agreement among the annotators, 

                                                           
1 Formal speech in natural context comprises a set of natural contexts that all the C-ORAL corpora (Cresti and 

Moneglia, 2005; Raso et al., forthcoming) partake, such as preaching, political speech and debate, professional 

explanation, teaching, conference and law.  
2 The excerpts with a number followed by underscore and another number are different parts of the same recording. 
3 The agreement data will be presented in Table 15. 

Context Sample Text
2
 Time Words 

Natural informal 

I 
bfammn11 01’11’’ 189 

bfammn24 00’58’’ 151 

II 
bpubmn12 01’26’’ 198 

bpubmn13 01’00’’ 180 

Media 

I 

bmidmasc01 01’23’’ 212 

bmidmasc02 01’21’’ 238 

bmidmasc03 01’07’’ 183 

II 

bmedsp03_1a 01’02’’ 206 

bmedsp03_1b 01’07’’ 200 

bmedts10_1 01’11’’ 180 

Natural formal 

I 
bnatmasc01 01’30’’ 205 

bnatmasc02 01’09’’ 161 

II 
bnatco03 01’00’’ 202 

bnatpr05 01’43’’ 181 
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including disfluencies, evaluated through the Fleiss kappa coefficient (Fleiss, 1971), was 0.80 

for TB and 0.75 for NTB in the first sample, and 0.73 for TB and 0.72 for NTB in the second 

one. 

The audio files were annotated into six Praat TextGrid tiers (Boersma and Weenink, 

2014) as follows:  

 

1) vowel-to-vowel (V-V)
4
 interval tier with a broad phonetic transcription (Albano and 

Moreira, 1996); 

2) point tier with points at every phonological word boundary. In each point tier, it was 

informed how many annotators signalled the focused upon phonological word 

boundary as a NTB; 

3) point tier with points at every phonological word boundary. In each point tier, it was 

informed how many annotators signalled the focused upon phonological word 

boundary as a TB; 

4) point tier with points at every phonological word boundary. In each point tier, it was 

informed how many annotators signalled the focused upon phonological word 

boundary as a disfluency; 

5) interval tier delimiting silent pauses;  

6) text tier with the textual transcription of utterances.  

 

Table 2: Summary of extracted acoustic parameters
5
. 

 

Class Type Measurement 

Speech rate 

and rhythm 
Global 

Rate of V-V unit normalized duration per second (right window 

context, left window context and difference) 

Rate of non-salient V-V units per second 

Standardized 

VV duration 

Local 
Mean of smoothed z-score (adjacent right context, adjacent left 

context and difference) 

Global 

Mean of smoothed z-score (right window context, left window 

context and difference) 

Standard deviation of smoothed z-score (right window context, left 

window context and difference) 

Skewness of smoothed z-score (right window context, left window 

context and difference) 

Peak rate of smoothed z-score (right window context, left window 

context and difference) 

Fundamental 

frequency 

Local 

F0 median for each V-V (left and right V-Vs in window and 

difference at window center) in semitones re 1 Hz 

First derivative of F0 median for each V-V unit (left and right V-Vs 

in window and difference at window center) in semitones re 1 Hz/s 

Global 

Mean of F0 medians (right window context, left window context and 

difference) in semitones re 1 Hz 

Standard deviation of F0 medians (right window context, left 

window context and difference) in semitones re 1 Hz 

Skewness of F0 medians (right window context, left window context 

and difference) 

                                                           
4 About V-V units, see Barbosa (2006). 
5 See Appendixes in the metadata section for the role of these parameters for the models. 



Modelling automatic detection of prosodic boundaries for Brazilian Portuguese spontaneous speech 

JoSS (9): 105-128. 2020 

Mean of F0 median first derivative (right window context, left 

window context and difference) in semitones re 1 Hz/s 

Standard deviation of F0 median first derivative (right window 

context, left window context and difference) in semitones re 1 Hz/s 

Peak rate of smoothed F0 peaks per second (right window context, 

left window context and difference) 

Intensity 

Local Mean spectral emphasis
6
 for V-V unit at window center in dB 

Global 
Mean spectral emphasis (right window context, left window context 

and difference) in dB 

Pause Local 
Pause presence (0 = absence or 1 = presence) 

Pause duration in seconds 

 

 

The Praat script BreakDescriptor (Barbosa, 2016-2018) was used to extract 111 phonetic-

acoustic measurements along the speech signal for all the V-V units in a window centered at all 

the boundaries between phonological words
7
. The windows scanned by the BreakDescriptor 

scan a maximum of V-V units that includes the target V-V unit plus ten V-V units to the left and 

ten V-V units to the right of each analyzed V-V unit. The extracted parameters comprise 

measures of: 1) Speech rate and rhythm (6 global measurements, see below); 2) Normalized 

duration (34 measurements – 12 global and 22 local, see below); 3) Fundamental frequency (65 

measurements – 21 global and 44 local); 4) Intensity (4 measurements – 3 global and 1 local); 

5) Silent pause (presence/absence and duration). Positions at which at least 50% of the 

annotators indicated a boundary of the same type were considered as a boundary. 

BreakDescriptor allows reducing the size of the scanned window if required. 

Table 2 shows a summary of the measurements extracted for prosodic analysis, divided 

into global and local. Global measurements are calculated considering the values in the whole 

left and right windows, plus the difference between those values. Local values are calculated for 

every single V-V unit of the left and right windows plus the target V-V position. 

Below, Figure 1 shows the windows scanned by BreakDescriptor. Starting from the top: 

wave form, broad-band spectrogram, and all tiers in a Praat TextGrid. The position of NTB used 

here constitutes the central point of the analyzed window; the windows scanned by 

BreakDescriptor are highlighted in yellow. 

 

                                                           
6 “Spectral emphasis may be described as an acoustic feature reflecting the relative intensity in the higher frequency 

bands” (Heldner, 2001). See Traunmüller and Eriksson (2000). 
7 See Teixeira (2018) for the complete list of measurements. 
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Figure 1: Windows scanned by BreakDescriptor. 

 

 

In Figure 1, the target V-V unit is positioned between the right and left windows scanned 

by the script. In this case, 11 annotators marked the target position as a NTB, 7 annotators 

marked it as TB and 1 of them marked it as a disfluency position. For the position highlighted 

with the green arrow, the acoustic-phonetic parameters are calculated in the 10 previous V-Vs 

units (left shaded area of the spectrogram), in the unit that marks the boundary position and in 

the 10 V-Vs units after the target position (right shaded area of the spectrogram). The target 

position under analysis is taken as NTB by BreakDescriptor because at least 50% of the 

annotators considered it as a NTB. Table 3 shows the total number of perceived boundaries in 

samples I and II. 

 

Table 3: Analyzed positions. 

 

 

 

 

 

 

 

 

 

 

 

Table 4 shows (silent) pause distribution for TB tags, while Table 5 shows the same data 

for NTB tags. This information is anticipated here since, as we will see, this constitutes a very 

important aspect for the analysis of the models and the main point for future research. 

 

 

 

 

 

 

Tag Total % Sample Frequency 

Terminal 116 4.8 
I 70 

II 46 

Non-terminal 534 22.3 
I 242 

II 292 

Non-boundary 1744 72.8 
I 985 

II 759 
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Table 4: Pause distribution in terminal boundaries. 

 

Sample  TB TB with pause  TB without pause 

I 70 80% 20% 

II 46 76% 24% 

 

Table 5: Pause distribution in non-terminal boundaries. 

 

Sample  NTB NTB with pause  NTB without pause 

I 242 39% 61% 

II 292 42% 58% 

 

 

3 Statistical analysis and results 

The Linear Discriminant Analysis (LDA) algorithm was used to develop models composed by 

multiple parameters designed for the automatic identification of boundaries.
8
 Different models 

were used to tackle the problem of automatic boundary detection. For TB, positions of TB and 

absence of TB (NTB and non-boundary) were used. For NTB, only positions of NTB and non-

boundary (NB) were used, since LDA presents too many false alarms due to confusion between 

TB and NTB, mainly caused by the effect of pause-related parameters
9
. 

All models independent variables were selected heuristically, starting from the output of 

the BreakDescriptor software and trying to reach the best recognition with smaller numbers of 

measurements and false alarms. Of course, this means that we had to decide which model 

attained the best balance among these three goals. These were our steps so far: 

 

1. we developed models for detecting TB and NTB using non-balanced data
10

 extracted 

from sample I; 

2. we validated these models on the data of sample II and on the full data (sample I plus 

sample II); 

3. we developed models from the non-balanced full data; 

4. we developed models with balanced data from each sample and from the full data, 

and applied them to the different samples and to the full data.  

 

These procedures yield a lot of information. The fact that we have different samples 

allows us to better understand the impact of the data on the models results. In fact, the different 

samples present different characteristics. This is important not only to evaluate the capacity of 

                                                           
8 Statistical analysis of data was performed using the environment for statistical computing R (R Core Team, 2019) 
9 Throughout this paper we will discuss the problems caused by the overestimation of pause by both TB and NTB 

models, which lead to the greatest amount of false alarms in all models. For a tool that gives a relevant weight to 

pause, see Avanzi et al. (2008). 
10 The balancing process consists in using the data that should be captured by the model and the same amount of 

randomly chosen data that the model should not capture. For instance, if we want a model that recognizes all TB in a 

sample with 40 TB marked by the annotators, the balancing needs 40 randomly chosen positions that are not TB (they 

can be NTB or NB). In fact, Machine Learning models generalize taking into account the amount of data. If data are 

non-balanced, the model tends to privilege those kinds of data that are present in larger number (Wei and Dunbrack 

Jr., 2013). As for non-balanced data, we mean all the data of the excerpts, irrespectively of the fact that they are NB, 

NTB or TB positions. 
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each model for generalization, but also to better understand the reasons for false alarms, and 

therefore to consider heuristics that could solve the problems highlighted by them. As already 

mentioned, the presence of a silent pause seems to be an important reason for false alarms and at 

the same time a problem easy to solve following perceptual criteria, as we will see later. 

 

 

3.1 Models developed for TB 

 

3.1.1 Models built with non-balanced data  

We started looking for the best model using the data of the first sample. As a first step, we used 

70% of the data to train the model and 30% for test. The second step was to select and annotate 

sample II and to use the whole sample I for training and sample II for test. At this point, we did 

not foresee a balancing of the data; so, we called it TB-nb (i.e. non-balanced). The TB-nb model 

developed from sample I gave us a good result (80%), with a high performance of recognition 

and a relatively small amount of false alarms. The TB-nb model trained for the entire sample I 

can be seen in Appendix 1
11

.  When we tested it on the second sample, we found that the 

recognition decayed (-10%) and a growth of false alarms was observed (+3.5%). The test with 

the full data (TB-Full) produced an intermediate result (75.6% with 7.4% of false alarms). The 

results of the application to the different samples are shown in Table 6, where the results of the 

TB model extracted from the whole non-balanced data are also shown. We will come back to 

this later in this section. Main parameters on the Tables means that the model is formed 

basically by parameters that involve a certain type of measurements, considering their number 

and their weight. This column should be interpreted as an extreme synthesis on what can be 

found during the discussion of each model and in the appendixes. 

 

Table 6: TB models developed with non-balanced data 

 

Boundary Model 
Main 

parameters 
Data set Sample 

Performance 

(%) 

False 

alarms (%) 

TB TB-nb Pause and f0 

training I 80 5 

test II 70 8.5 

test Full data 75.6 7.4 

TB TB-full Pause and f0 training Full data 65.5 2.9 

 

 

Comparing the two models, we realized that the main reason for the loss of explanatory 

potential was due to the significantly different number of TB in the two samples, and essentially 

the different number and distribution of pauses (see table 4). This is confirmed by analyzing the 

false alarms of the two samples and observing that the model seems to overestimate the 

relevance of a pause as a feature for detecting TB. Besides these two reasons, many problems 

with false alarms related to pause emerge also in the NTB models, as we will see later. It is 

known, in fact, that silent pauses, while always being seen as a sufficient condition for a 

boundary, do not seem a relevant one to distinguish between the two different kinds of 

boundaries we were looking for. Pauses can mark both TB and NTB, and, according to research 

conducted on spontaneous speech corpus data (Raso et al., 2015), its duration cannot be seen as 

a strong correlate of the nature of the boundary.  The TB-nb model is made up by 20 different 

                                                           
11 All the appendixes can be seen in the metadata section. 
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measurements. The two most important parameters are pause duration and pause presence. 

Their weight is much higher than the weight of the other 18 measurements.  

Besides this, it is interesting for the discussion to notice that eleven parameters point to 

the importance of f0 descriptors. Moreover, among these eleven f0 measurements, four of them 

have the highest weight after the pause measurements. The most important of them was f0 reset 

(F0 median difference across boundary) and the second one was F0 median slope in the first V-

V unit of the right window. The third one was F0 median slope mean within the left window. 

This might be correlated with declination. Duration at a first sight did not seem to play an 

important role, as happens in all the TB models, but this deserves some more consideration and 

we will come back to it later. The first duration-related measurement appears only in 7
th
 position 

as an LDA load and concerns the difference in rate of duration-related peak across boundary. 

The load of the V-V normalized duration in 1
st
 V-V unit on the left window appears only in 13

th
 

position, and four other measurements related to duration and rhythm appear with smaller loads 

just before one measurement related to intensity at the last position. 

Let us now make some observations about the TB-full model, developed with the non-

balanced data of the two samples together. This model has a lower performance because our 

goal was to ensure a lower number of false alarms. It can be seen in details in Appendix 2. This 

model is the only one for which pause duration clearly has a much higher load than any other 

parameter. Also, the presence of pause (which usually is the most relevant measurement for 

explaining a TB), even occupying the second position in the hierarchy of the model, does not 

differ much in load from the other measurements. The model features seventeen measurements: 

fourteen are related to f0 and only the last one to duration. What we can observe is that the 

burden caused by a model that gives too much weight to pause duration compared to other 

measurements seems to lead to a much lower performance, probably leaving aside many 

positions followed by short pauses. This confirms the impression that pause duration, if 

considered the main feature to indicate terminality, does not necessarily work well. 

 

3.1.2 Models built with balanced data  

Our next step was to develop models from balanced data, which we call TB-b. The model 

developed from balanced data from sample I (see Appendix 3), when tested with the non-

balanced data of each sample and with the full data, shows an increase of performance, but also 

an increase of false alarms. Considering these two aspects, it would not be easy to choose 

between the models developed from balanced or non-balanced data, as Table 7 shows. 

 

Table 7: TB models developed with balanced data of sample I. 

 

 

The reason that probably renders the model extracted from balanced data preferable is the 

fact that it is based on only eight parameters instead of twenty. These parameters substantially 

confirm the analysis made based on the non-balanced data model. The first parameter, with a 

much higher load over the others, is the presence of a pause. Pause duration is the third 

parameter, but with a much lesser load. The second parameter is the general changes in the 

Boundary Model 
Main 

parameters 
Data set Sample 

Performance 

(%) 

False alarms 

(%) 

TB TB-b1 Pause and f0 

training I-b 84.2 (+4.2) 7 (+2) 

test II-nb 76.3 (+6.3) 12 (+3.5) 

test Full data-nb 79 (+3.5) 9.7 (+2.3) 

test I-nb 84.2 (+4.2) 7.6 (+2.6) 
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intonational contour of f0 on the left window. Then we have one duration parameter and four 

f0-related ones. The duration-related one is the change of articulation rate. The f0-related ones 

are, in decreasing order of load, the change of rate of f0 maxima (which is related to the rate of 

pitch accent), the change of f0 between the V-V at the boundary and the first V-V on its right, 

the reset of f0 after the boundary, and the median f0 slope on the last V-V unit on the left 

window. 

 It seems that pause continues to be an overestimated parameter, since the almost totality 

of false alarms coincide with a position where there is a pause. The load of pause presence is 

clearly much higher than the load of all the other parameters. Lower in the hierarchy, f0-related 

parameters continue to be relevant. An f0 measurement is in the second position in the load 

hierarchy, and comes before pause duration parameter, which has a much lesser load in 

comparison with that of the non-balanced data model. The change in articulation rate is the only 

duration-related parameter present in the model. It is difficult to understand why the change in 

peak rate of smoothed F0 peaks per second appears in 5th place, but it is easy to understand the 

importance of the other f0 measurements. No intensity-related parameters are relevant. 

 On the basis of early work on the matter, we tried to insert other duration-related 

parameters in the model, mainly parameters related to lenghtening in the target V-V just before 

the boundary and at the first V-V unit on his left and on his right, which yields an interesting 

result: the insertion of these parameters did not change performance. We will come back to this 

point later. 

 We also developed other models for TB. One from the balanced data extracted from 

sample II and one extracted from the balanced data of the full data (sample I plus sample II). 

For the entire composition of these models, see Appendix 4 and 5.  

 The model extracted from the balanced data of sample II was called TB-b2 and the 

results of its applications can be seen in Table 8: 

 

Table 8: model developed with balanced data extracted from sample II. 

 

Boundary Model 
Main 

parameters 
Data set Sample 

Performance 

(%) 

False alarms 

(%) 

TB TB-b2 Pause and f0 

training II-b 82.6 12.3 

test I-nb 80.8 7.8 

test Full data-nb 81.5 10 

test II-nb 82.6 12.3 

 

 

This model shows more similar performances than the previous one when applied to 

different data, but this does not seem to make it immediately better or worse than the model 

extracted from sample I. What is confirmed is that the different data sets of the two samples 

have an impact on the performance, and this must be considered. The relevance of certain 

parameters is confirmed, with a few differences. Pause presence remains the main parameter 

with a much higher load with respect to the others. Now pause duration is the 5th and last 

parameter. This means that one advantage of this model is that it is simpler in terms of number 

of measurements. The other three measurements are related to f0 and reflect previous 

knowledge on boundary-related parameters: reset of f0, f0 slope median difference across 

boundary, and median f0 slope in the boundary unit itself. Additionally in this case, inserting 

duration-related measurements does not change the results, just increases the number of 

measurements. 
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 A last TB model was developed using balanced data from the two samples together 

(which we call TB-bFull) and it was applied to the three groups of non-balanced data. The 

results can be observed in Table 9. The whole model can be seen in Appendix 5. 

 
Table 9: Model depeloved with data from the two samples together. 

 

Boundary Model 
Main 

parameters 
Data set Sample 

Performance 

(%) 

False alarms 

(%) 

TB 
TB-

bfull 
Pause and f0 

training Full data-b 81.5 12.6 

test I-nb 83.5 7.3 

test II-nb 78.2 11.4 

test Full data-nb 81.5 9.2 

 

 

Again, we do not see clear evidence that this model is either better or worse than the other 

two, if we just look at its performance. It seems to work better on sample I than on sample II 

data, which shows how the results are sensitive to the characteristics of each sample. If we 

investigate the parameters of the model, we must first observe that it presents six measurements, 

being therefore simpler than TB-b from sample I and presenting only one more measurement 

than TB-b from sample II. Once again, the two measurements related to pause occupy the first 

two positions in terms of load, coherently with the fact that the model performs better with 

sample I than with sample II. In general, presence of pause seems more important than pause 

duration, except for the TB-nb model extracted from sample II and for the TB-nbFull. It seems, 

therefore, that an important effect of data balance is the reduction of the importance of pause 

duration. Presence of pause also presents a clearly higher load compared to the other 

measurements. Then, we have three measurements related to f0, and a last measurement related 

to duration. The three f0-related measurements are, in decreasing order of load: f0 reset, median 

f0 slope in the last V-V unit on the left of the boundary position V-V, and F0 median slope in 

V-V unit on the left window immediately before the boundary. The duration measurement 

concerns the first V-V unit on the left of the boundary unit. 

 If we compare the three balanced models and their composition, we observe many 

elements of coherence among them, as well as between them and what is usually said in the 

literature (Cruttenden, 1997; Wagner and Watson, 2010; Amir et al., 2004; Blaauw, 1994; Mo, 

2008). In terms of number of parameters, there is no evident difference, despite the fact that TB-

b2 features only 5 measurements and TB-b1 8 measurements. TB-bFull features 6 

measurements. In terms of results (considering both correct identification and false alarms) 

model TB-b1 reaches the best result, but only on sample I, decaying in correct identification 

especially in sample II. Model TB-b2 reaches the most similarity when applied to the different 

samples, but it also features an increase of false alarms; as expected, model TB-bFull shows an 

intermediate situation, and seems more appropriate for the data of sample I than for those of 

sample II. 

 What seems especially interesting is the coherence in terms of measurements: presence 

of pause is clearly the most important one in the three models, especially in the model extracted 

from the two samples in isolation. Its importance in the model extracted from the full data 

seems less different from that of other parameters, but still occupies the first place. Duration of 

pause is present in all the models, but while it is the second most important parameter in TB-

bFull and the third one in TB-b from sample I, it occupies the last position in TB-b trained on 

sample II. This may be due to the limited presence of TB and especially those followed by a 
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pause. However, also in TB-b from sample I, duration of pause does not seem to have a 

significant difference in load compared to the other parameters. This poses a question: why TB-

bFull gives to pause duration more importance than the two samples from which it is built? It 

does not seem easy to answer this question, but it shows that, once more, pause is a parameter 

that, despite its importance, generates particular effects on the different models, their 

performance and the false alarms. 

All the TB models show that f0 measurements are very important: f0 reset is the second 

most relevant factor in TB-b2 and the third one in TB-bFull, while it occupies the 7
th
 position in 

TB-bI; the change in f0 between the V-V unit at a boundary and the first unit on the right is the 

fourth most important measurement in TB-bFull and the 6
th
 one in TB-b1; f0 slope median 

difference across boundaries is the fourth measurement in TB-bII; f0 median slope in first V-V 

unit of the right window and f0 median slope in the immediately leftward of the boundary unit 

is the 8
th
 one in TB-b1. 

All these measurements deal with f0 changes in the three V-V units that comprise the 

boundary unit and the adjacent one on the left and/or the right. They might refer, at least 

partially, to the same phenomena: mainly f0 reset or shift and a clear change of the movement at 

the boundary point or immediately before or after it. Two other measurements related to f0 

appear only in TB-b1: f0 median slope mean within the left window appears in the 2nd position; 

one possible hypothesis is that this parameter refers to declination. The alternative hypothesis is 

variability in using pitch accent. Both hypotheses are, at least partially, consistent with 

terminality, since terminality signals the end of the utterance. Each utterance in fact is 

characterized by declination and by possible variability in its main pitch accent, which is crucial 

to signal the illocutionary value of the utterance. However, we may have (especially in 

monological speech) long terminated sequences with more than one illocution, each one 

followed by a NTB. Change in F0 peak rate appears in 5
th
 position. It is related to change in 

pitch accent rate, which concerns mainly expressivity, and, to a certain degree, is associated 

with the semantic/pragmatic (illocutionary) value of the utterance. In any case, recall that TB-b1 

features more measurements than the other two models. 

On the other hand, V-V duration-related measurements play a marginal role. No such a 

measure appears in TB-b2 model, and just one appears in the other two: in TB-b1 change in 

articulation rate appears in 4
th
 position, and duration of the first V-V unit on the left window 

appears in 6
th
 position of TB-bFull. No intensity measurement is present in any model. 

We can therefore say that the models are largely coherent among themselves. With 

respect to what is usually said in the literature, the only surprise is the lower relevance of 

durational measurements. This will be discussed later. 

 

3.2. Models developed for NTB 

For the NTB models, we used only positions that the majority of the annotators marked as NTB 

or NB (no boundary). In fact, the identification of NTB positions seems a much more difficult 

task. Our steps were as follows: 

1. Firstly, we built a model from the non-balanced data of sample I. This model is called 

NTB-1.  

2. Since we did not reach a satisfactory result, what we did was to withdraw the positions 

correctly identified by this first model and to develop a second model with the 

remaining positions (NTB-2); we again withdrew the positions correctly identified by 

this second model and developed a third model for the remaining positions (NTB-3). At 

the end of this process, 98% of NTB were correctly identified. This result can be seen in 
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Table 9, by summing 68% (NTB-1 training), 25% (NTB-2 training) and 5% (NTB-3 

training). These models were tested on sample II and to full dataset, as shown in Table 

9. These three models can be seen respectively in Appendix 6, 7 and 8. 

3. We built a model using balanced data from sample II and a model using balanced data 

extracted from the Full data (sample I plus sample II), and applied them to all the non-

balanced samples. 

 

 

3.2.1. Models developed from non-balanced data 

The performance of the NTB models built with non-balanced data extracted from sample I and 

applied to the other samples can be seen in Table 10: 

 

Table 10: NTB models developed with non-balanced data. 

 

 Model 
Main 

parameters 
Data set Sample 

Performance 

(%) 

False 

alarms (%) 

NTB NTB-1 

Standardized V-

V duration and 

pause 

training I 68 22 

test II 66 28 

test Full data 66 25.6 

NTB NTB-2 
Speech rate and 

f0 

training I 25 20 

test II 19 47 

test Full data 17.1 38.8 

NTB NTB-3 

Standardized V-

V duration and 

f0 

training I 5 12 

test II 3.4 13.6 

test Full data 4.7 16.4 

 

 

In Table 10, NTB-1 refers to the first model, extracted from the whole data (after the 

exclusion of the TB positions marked by the majority of the annotators) of sample I. This model 

reached an agreement of 68% with the annotators. This performance is slightly lower when the 

model is applied to sample II and to the full data (sample I plus sample II), but still very close, 

which signals generalization was achieved. However, the number of false alarms is high.  NTB-

2 refers to the model built on the data that NTB-1 did not correctly identify, after having 

withdrawn the data recognized by NTB-1. NTB-2 comprises the false alarms of NTB-1. In this 

case, what seems to be relevant to point out is the increase of the number of false alarms when 

the model is applied to sample II or the Full data. Correct identification also decays more than 

in the case of NTB-1. The same happens with NTB-3 (obtained with the rest of data of sample I 

after the withdrawal of the already correctly identified positions but including all the false 

alarms). Because NTB-3 was trained to a restricted amount of data, its results must be taken 

with reserve. The fact that NTB-2 and NTB-3 decay so much is expected, since the number of 

positions is much lower and therefore more dependent on the characteristic of the specific data. 

 It is important to say that there is a significant number of NTB positions that can be 

captured with more than one model: some of them can be captured by the three models, some 

by two of them, and only a remaining part is captured by one model alone. This confirms what 

we have already seen with TB models: sample I and sample II present different characteristics 

that have an impact on the performance of the models based on one sample. However, it is 

interesting to observe that the NTB-1 model shows less difference in performance than the other 

two models. This suggests that it would be interesting to analyze in more detail the 
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characteristics of data recognized by the different models. We analyzed the false alarms, and 

again a large number of them is related to pause presence. Having pause presence as a boundary 

predictor leads to the fact that both TB and NTB models frequently signal the same positions.  

 NTB-1 comprises nine measurements; NTB-2 comprises ten measurements and NTB-3 

eight measurements. It is interesting to observe the composition of the three models, especially 

the first and more accurate one, and compare them with the composition of the TB models, 

which, as we have already seen, are very similar to each other. 

 NTB-1 features six duration-related measurements, the two measurements for pause and 

just one f0-related measurement with a very low load in the penultimate position among the 

nine measurements of the model. Looking at the load of the measurements in this model, we can 

clearly divide them in three groups: the first 3 measurements, all duration-related, present a load 

between 4.5 and 4.2; the following two measurements present a load of 2.6 and 2.3 and are 

presence and duration of pause; the other ones have 0.3 and 0.2 as loads.  

 The duration-related measurements with the highest loads are: normalized duration of 

the V-V unit at the boundary position; normalized duration of the first V-V unit on the right 

window; normalized duration change between the first V-V unit on the right window and the V-

V unit at the boundary point. The other durational measurements are: change in articulation rate, 

change in speech rate, and normalized duration of the first V-V unit immediately leftwards. The 

only f0-related measurement, with a very low load, is change in f0 slope, which is related to f0 

variability.  

 These observations, if compared to those made for the TB models, show that duration is 

very important for the correct identification of NTB, while it was absent or almost absent in the 

TB models. On the other hand, in this NTB model, f0 is almost absent, while it was the most 

important factor, together with pause, in TB models. If we turn to pause, we can see that this 

parameter plays an important role both for TB and NTB, even if it seems more important for TB 

than for NTB. This is another important argument to explain why the great majority of false 

alarms, both in TB and in NTB models, are related to positions followed by pause. 

 If we compare the composition of the three NTB models, we can also say that, while 

NTB-1 basically comprises V-V duration-related and pause measurements, NTB-2 comprises 

mainly f0-related measurements, and NTB-3 comprises a mix of duration-related and f0-related 

measurements. However, while NTB-1 seems to separate the load of the measurements in three 

clear groups, as we already said, the NTB-2 model does not present a clear difference in terms 

of load among the parameters. In the case of NTB-3, the measurements related to V-V duration 

present a much higher load than the measurements related to f0 (which, on the other side, are in 

larger number), but we cannot give much importance to a model extracted from very little data. 

However, the main general impression is that NTB cannot be seen as just one type of boundary, 

while this seems more likely for TB. 

 We did not develop a model from non-balanced data from sample II, and directly 

developed a model from non-balanced data from the two samples combined together, which we 

call NTB-nbFull, and whose results are shown in Table 11 (see Appendix 9 for the details about 

the model): 

 

Table 11: Results of the model NTB-nbFull. 

 

Boundary Model 
Main 

parameters 

Stat. 

analysis 
Sample 

Performance 

(%) 

False alarms 

(%) 

NTB 
NTB-

nbFull 

Pause and 

duration 
Development 

Full 

data-nb 
40.6 0.6 
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This model recognizes a reduced number of positions, compared to the NTB-1, but has 

the advantages of presenting very few false alarms and only five measurements. Among them, 

presence of pause has a much higher load compared to all the others. The other measurements 

do not present a relevant difference in load among themselves, and are all related to V-V 

duration. Difference in  V-V normalized duration mean between first unit of the right window 

and the boundary unit; V-V normalized duration in the V-V unit immediately leftward the 

boundary; V-V normalized duration of V-V unit at boundary point; change in articulation rate. 

Therefore, the importance of duration-related parameters and the fact that pause is a parameter 

that the two main kinds of boundaries have in common is confirmed.  

 

3.2.2. Models built from balanced data 

Before getting in a general discussion and proposing some strategies to improve correct 

identification and reduce the false alarms, we still need to show the models obtained from the 

balanced data. The model extracted from balanced data of sample I gave the results shown in 

Table 12 (see Appendix 10 for the details): 

 

Table 12: Results of model NTB-b1. 

 

Boundary Model 
Main 

parameters 
Stat. analysis Sample 

Performance 

(%) 

False 

alarms (%) 

NTB 
NTB-

b1 

Pause, 

articulation 

rate and stand. 

segment dur. 

Development I-b 72 23.5 

Validation II-nb 71.2 38.2 

Validation Full data-nb 71.9 33.4 

Validation I-nb 72 29.8 

 

 

This model reached much more satisfactory results than NTB-1 and its recognition power 

remains stable in all the applications to the different samples of non-balanced data, but, at the 

same time, it presents a great amount of false alarms, especially when applied to sample II. 

Again, the false alarms involve principally positions followed by pause. This model comprises 

eleven measurements. Once again presence and duration of pause are the first ones, with a 

clearly higher weight with respect to all the other measurements. At the same time, we have the 

confirmation that duration-related parameters are decisive for the correct identification of NTB. 

They occupy the hierarchical positions of the model from the 3
rd

 to the 6
th
 ones besides the 8

th
 

and the 9
th
 ones. The other measurements involve f0.  

In order of load, the durational parameters are: change in articulation rate; Difference in  

V-V normalized duration mean between first unit of the right window and the boundary unit; V-

V normalized duration in the V-V unit immediately leftward the boundary unit; V-V normalized 

duration of V-V unit at boundary point; change in normalized duration variability and change in 

speech rate. Among the f0 parameters, the most important is the f0 mean slope in boundary unit, 

followed by the f0 change between the boundary unit and the two adjacent ones. 

This model, obtained with the balanced data, seems to make a good synthesis of the 

NTB1 and the NTB2. The fact that the two measurements of pause are the first ones could be an 

important indication for future strategies, as we will see. 

The model extracted from the balanced data of sample II presents the results shown in 

Table 13 (see Appendix 11 for details): 
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Table 13: Results of model NTB-b2. 

 

Boundary Model 
Main 

parameters 

Stat. 

analysis 
Sample 

Performance 

(%) 

False 

alarms 

(%) 

NTB NTB-b2 

F0, articulation 

rate and stand. 

segment dur. 

Development II-b 69 17.4 

Validation I-nb 75.6 40.9 

Validation Full data-nb 71.7 35.4 

Validation II-nb 73.9 31.2 

 

 

Comparing the potential for correct identification and the false alarms of this model with 

the model extracted from sample I and presented in Table 12, we mainly observe a small gain in 

terms of correct identification and an increase of false alarms, especially if we compare the 

results when applied to the whole data. We also need to observe that the NTB-b2 model shows a 

lower performance compared with NTB-b1 and at the same time a lower number of false 

alarms. 

 This model is even more complex than the previous one, since it comprises thirteen 

measurements. However, it is interesting to compare their composition: seven of the eleven 

measurements of NTB-b1 are also present in NTB-b2. Six of them are duration-related 

measurements and only one is related to f0 (f0 slope mean difference across boundary). A few 

other measurements seem to be related to similar phonetic phenomena. In NTB-b1 the f0 mean 

slope appears in boundary unit, while in NTB-b2 the f0 median slope shows up in the V-V unit 

immediately leftward of the boundary. In NTB-b1 (in 11
th
 position), the f0 in the V-V unit 

occurs immediately leftward the boundary unit, while in NTB-b2 the f0 median slope appears in 

first V-V unit of the right window. All these measurements are related to something that 

changes in the f0 at the boundary unit or/and the adjacent ones. In NTB-b2 the f0 reset also 

shows up as the most important parameter. This parameter can be related to the same group of 

phenomena just mentioned. The main difference between the two models is due to the presence 

of pause and pause duration as the two most important parameters in NTB-b1, while no pause 

measurement appears in TB-b2. Once again, we observe that pause represents an important 

predictor, not only for most of the model composition, but also for its different impact on the 

data of the two samples; and once again, we observe that a significant part of the false alarms is 

related to positions followed by pause. 

 Finally, let us see what happens with the NTB model extracted from the balanced data 

of the two samples together. The results of the model NTB-bFull can be seen in Table 14 and 

the model details are in Appendix 12.  

 

Table 14: Results of model NTB-bFull. 
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Boundary Model 
Main 

parameters 
Stat. analysis Sample 

Performance 

(%) 

False 

alarms 

(%) 

NTB 
NTB-

bfull 

Pause, f0 

and speech 

rate 

Development Full data-b 54.5 6 

Validation I-nb 51 11 

Validation II-nb 57.5 13.4 

Validation Full data-nb 54.5 12 
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The model extracted from the full balanced data and tested with the other sample is still 

under development; so far it offers an agreement with humans less interesting than the other two 

NTB balanced models, but at the same time it presents much fewer false alarms, which should 

not be underestimated. This model, at this stage, presents sixteen measurements. Once again the 

two measurements related to pause are at the top of the hierarchy: presence of pause has a 

higher weight than pause duration (as usually happens), but the two pause measurements have a 

higher weight than all the other measurements, whose weight diminishes slowly. The model 

presents nine f0 measurements and five duration ones. Both types of measurements confirm that 

what happens in the three units around the boundary point is essential, while global 

measurements seem to have much less weight, with the exception of articulation rate, and local 

measurements besides the three central V-V units do not seem to have any weight. In all the 

models, we have seen so far, only in one case, in NTB-1, a local measurement related with the 

penultimate V-V unit appears with a very low weight. 

 At this point, we are ready to make some final considerations and propose strategies for 

the future of this research. 

 

4 Final considerations and future strategies 

Analyzing the models developed so far, we found eight recurring aspects that can be put 

together, in order to elaborate future strategies to reach better models. They are listed in 1 to 8 

below. 

1. We observed that the data sets have an impact on the models: training on sample I and 

sample II leads to different models. However, we can identify some parameters that constantly 

appear in the models built from the two samples. At the same time, the results indicate that 

testing on a different data set does not lead to radically different performances. Looking from 

this perspective, we can say that we have a good departure point and we should look now for 

strategies that are flexible with respect to specific aspects of the data. Another potential issue is 

whether the amount of data we annotated and analyzed can be considered sufficient to produce 

models that can be generalized. This aspect goes beyond the scope of this paper. 

2. An aspect that often emerges is the relative role of pause parameters in almost all the 

models, and at the same time the fact that these parameters seem the main reason for false 

alarms and the distinction in performance between the data sets. Actually, false alarms in 

positions not followed by pauses are very rare. Pause is, of course, a necessary parameter for 

boundary identification, since it is the only parameter that always generates a boundary 

automatically, but it also is responsible for a confusion between the two types of boundaries. 

Therefore, we need a strategy to face this problem. The fact that presence of pause is a highly 

perceivable parameter by human annotators may facilitate the task. In fact, as we will propose 

later, we need more models, that could be applied on the data, arranged into a hierarchy. This 

means that we need to ask the annotators to separate data according to certain salient 

parameters. Presence/absence of pause seems a very good candidate to separate the data for 

specific models: they are a very relevant parameter for our task, the principal cause of false 

alarms, and at the same time very easily perceived by annotators.  

3. We observed, in all the models, that local measurements seem to have a greater 

importance and that only the three central positions of the window taken in consideration by the 

BreakDescriptor look really important. This is a relevant point, since it might suggest a strong 

reduction of window extension.  

4. It might also be useful to investigate the possible negative effect, from a statistical 

point of view, that different measurements have on the evaluation of the same phenomenon. 
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This means that there might exist colinearity or nested variables among different measurements.  

For instance, pause duration overlaps with pause presence, and it might be useful to exclude 

presence of pause, since pause duration, of course, already implies presence of pause. This kind 

of situation might cause the overestimation of the load attributed to one phenomenon, since it is 

considered by more than one measurement. This might happen also with duration-related and 

f0-related measurements, which should be carefully considered. 

5. Intensity-related parameters do not seem relevant in any model. 

6. Special attention should be paid to the effect of duration-related parameters, especially 

if we compare TB and NTB. We noticed that: (i) the models for TB do not really profit from the 

insertion of V-V duration-related parameters; (ii) durational parameters seem necessary in all 

the NTB models; (iii) if we add some durational parameters to the TB models, we do not change 

the performance and just add more parameters to the model. This seems to suggest that V-V 

duration-related parameters are present in any type of boundary, but do not play a special role in 

distinguishing between TB and NTB. This is something that resembles what happens with 

pause, but while pause is something very easily perceived by annotators, V-V duration effects 

are not (they are related to segment lengthening and shortening). 

7. As for f0-related measurements, they seem very important to capture TB, but they are 

much less important for NTB. In the main non-balanced models (those that capture more than 

2/3 of the positions), only one f0-related measurement appears in NTB-1, with a very low load, 

and no f0 measurement appears in the NTB-Full. This picture changes partially if we consider 

models extracted from balanced data and if we consider NTB-2. Let us see first what happens in 

NTB-2. In this model, f0-related parameters seem very important, but we should keep in mind 

that this model identified 25% of boundary position, since we have already withdrawn the data 

recognized by NTB-1, and that NTB-2 does not feature any measurement for pause. Now, let us 

see what happens in the balanced models. While the NTB-b built from sample I still gives a 

very reduced importance to f0-related measurements, the NTB-b built from sample II shows a 

sort of balance between f0-related and duration-related measurements. This should be analyzed 

together with the fact that NTB-b II is the only model that does not feature any pause 

measurement. In fact, in the NTB-bFull model the pause-related measurements are the two most 

important ones, before mixing f0 and duration-related parameters, with more emphasis to the 

former. Therefore, it seems that the importance of f0 is related to the behavior of the two 

samples with respect to pause, presented above in Table 4. Sample I features 56 TB with pause 

and 14 TB without pause; sample II features 35 TB with pause and 11 without pause. On the 

other hand, sample I features 91 NTB with pause and 142 without pause, while sample II 

features 120 NTB with pause and 170 without pause. The balance of data with and without 

pause with respect to TB and to NTB is very different. This might be one of the main reasons, if 

not the main one, for the different models inferred from the two samples. 

8. We clearly observed that TB can be identified much more easily than NTB. Any single 

model already reaches very good results for TB, while no NTB model reaches satisfying results, 

either because of low correct identification or because of the great amount of false alarms, and 

often for both reasons. This seems to have two consequences: (i) it confirms that TB and NTB 

should be treated separately, reinforcing the hypothesis that we perceive TB as something 

different from just a boundary irrespectively of its nature; (ii) it shows that NTB cannot be 

treated as just one category; we need to deal with different kinds of NTB. 

Together with the eight above listed considerations, we need to recall that this research 

has two goals: one is of course to reach models that can be applied to spontaneous speech 

corpora and perform an automatic segmentation as trustable as possible.  The other goal is to 

understand better how we signal and perceive boundaries in natural speech, and to investigate if 
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we can distinguish among boundaries of different nature. This means that any model needs to 

interact with perceptual cues. It should somehow help us to better understand what we perceive 

when we judge that a particular position in the speech chain is a boundary and when we judge 

that a boundary has a specific function.  

However, our findings not necessarily reflect exactly the physical nature of prosodic 

boundaries or parameters that human cognition uses to perceive a boundary. The models try to 

reproduce the results achieved by the annotators through their perception, but we cannot state 

that the models capture precisely the perceptual parameters of humans, or that the parameters 

weight and combinations reflect exactly human perception. Nevertheless, our findings can be 

considered an attempt to better understand the physical cues behind human perception and allow 

to make good assumption on the importance of features (or combinations of features) that might 

lead us to a more advanced knowledge of the relationship between human perception and 

physical cues with respect to these different kinds of boundaries 

So far, we are working with the hypothesis that there are two different kinds of 

boundaries from a functional point of view. However, our results suggest the reevaluation of 

this hypothesis for at least NTB, which seems to be associated with different functions. Building 

on this work, our next steps will be based on the following considerations: 

1. It seems to be more important to have models with a very low rate of false alarms. This 

is motivated by the fact that we can easily apply more models in a hierarchical way to achieve 

higher correct identification rates than deal with false alarms.  

2. It is crucial to differentiate the data in a way that we can create different models with 

specialized functions.  

3. Since the performance of the model is measured with respect to human performance, 

we need to differentiate the data using a highly perceivable parameter. The most important one 

in this vein is pause, which also seems to be responsible for the majority of false alarms 

4. Our plan is to ask the annotators to also inform whether they perceive a pause or not 

from the majority of TB and NTB (the ideal segmentation based on the agreement among 

annotators). For this task, we will invite only the annotators that better respect the following 

criteria: (i) a higher inter-rater agreement reached during the annotation (done more or less two 

years ago); and (ii) a high intra-annotator agreement, i.e. the agreement with themselves, 

repeating the same task two years later. The first criterium seems more important, but the 

second one could lead to a different decision in some cases. If we keep the annotators with 

higher degree of agreement, we observe that this agreement is very high. The inter-rater 

agreement among the 19 annotators is presented in Table 15, taking as reference the ideal 

segmentation (i.e. the segmentation used to build the model, which is the result of the decision 

of the majority of the annotators). The intra-annotator agreement computation was already done, 

among ten annotators, and the results are shown in Table 16. 
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Table 15. Inter-annotator agreement, taking as reference the segmentation applied to build the models. 

 

Annotator General TB Disfluency NTB NB 

To. 0.92 0.86 0.87 0.92 0.94 

Lui. 0.91 0.80 0.94 0.89 0.94 

Áb. 0.91 0.87 0.96 0.88 0.93 

Gi. 0.91 0.83 0.95 0.88 0.93 

Fr. 0.89 0.82 0.91 0.88 0.92 

Sa. 0.89 0.88 0.91 0.87 0.92 

Ba. 0.89 0.88 0.92 0.86 0.91 

Ad. 0.88 0.87 0.91 0.86 0.89 

Th. 0.88 0.83 0.96 0.83 0.90 

Al. 0.87 0.77 0.96 0.83 0.91 

He. 0.87 0.68 0.99 0.83 0.90 

Mr. 087 0.68 0.99 0.83 0.90 

Ol. 0.87 0.82 0.92 0.83 0.89 

Ma. 0.85 0.80 0.81 0.82 0.89 

Luc. 0.84 0.75 0.95 0.79 0.88 

Ta. 0.80 0.80 0.84 0.76 0.81 

Br. 0.78 0.87 0.34 0.73 0.88 

Is. 0.76 0.80 0.30 0.70 0.89 

Ca. 0.75 0.71 0.87 0.67 0.79 

 

 

Table 16: Intra-annotator agreement. 

 

Annotator General TB Disfluency NTB NB 

To. 0,92 0,90 0,90 0,94 0,93 

Gi. 0,90 0,86 0,96 0,83 0,94 

Sa. 0,90 0,91 0,90 0,87 0,93 

Fr. 0,88 0,79 0,99 0,83 0,91 

Lui. 0,88 0,85 0,93 0,83 0,90 

Th. 0,87 0,71 1,00 0,76 0,92 

Al. 0,87 0,80 0,97 0,78 0,90 

Luc. 0,86 0,80 0,88 0,78 0,91 

Ba. 0,84 0,82 0,88 0,76 0,89 

Br. 0,79 0,90 0,54 0,71 0,91 

Ca. 0,76 0,56 0,93 0,63 0,83 

 

 

The intra-annotator test was satisfying, since it ranges from 0.92 to 0.76, and for eight 

annotators it ranges from 0.92 to 0.84 (Fleiss’s Kappa). 

5. Once the annotators have performed this new task, we can separate positions with and 

without pause and develop two different models. What we hope is that these two models will 

avoid the confusion caused by the co-presence of boundaries with and without pause, since 

pause is a very relevant parameter to recognize the presence of boundary, but at the same time 

seems to be the main parameter yielding a confusion between the two types of boundaries. Once 
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we have different models for data with and without pause, we can look for the best hierarchy by 

applying these models, progressively withdrawing the data recognized by the previous model. 

The hierarchy will be guided by a simple criterium: the model exhibiting the best performance 

will be applied first, followed by the models with lower performance. Subsequent models will, 

therefore, need to deal with fewer and more coherent data, because the elimination of data 

recognized by previous models will automatically make easier to categorize the remaining data. 

6. In parallel, we will reduce the window size scanned by the BreakDescriptor, in order to 

verify if this strategy (as suggested by the data analysis) reduces the noise produced by so many 

measurements. Our idea is to reduce the windows from 21 V-V units to 7 and 3 V-V units. This 

means that we will try two different strategies of reduction of the window, in order to verify the 

impact that this reduction may have on the global parameters. At the same time, we will try to 

understand better if some measurements could be overestimated because they partially overlap 

with each other in capturing the same phenomenon. We also need to consider that the phonetic 

phenomenon that leads to boundary perception may happen in a region not coinciding with the 

phonological boundary; then it is our expertise that decides the exact phonological position 

where to place the boundary, which in most cases coincides with the end of a phonological 

word. 
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