Preparation of crosslinkable nitric oxide donor PAA/F127/PVA hybrid hydrogels for 3D printing
PDF

Palavras-chave

Biomaterials
3D printing
Nitric oxide

Como Citar

BOMEDIANO, Mateus; OLIVEIRA, Marcelo de; SANTOS, Murilo. Preparation of crosslinkable nitric oxide donor PAA/F127/PVA hybrid hydrogels for 3D printing. Revista dos Trabalhos de Iniciação Científica da UNICAMP, Campinas, SP, n. 27, p. 1–1, 2019. DOI: 10.20396/revpibic2720192278. Disponível em: https://econtents.bc.unicamp.br/eventos/index.php/pibic/article/view/2278. Acesso em: 23 abr. 2024.

Resumo

Nitric oxide (NO) acts in several physiological and pathophysiological processes such as wound healing and vasodilation¹, which has stimulated the development of hydrogels capable of releasing NO locally in biomedical applications. The main objective of this project is the development of photocrosslinkable NO donor hybrid hydrogels for the 3D printing of biomaterials. The hydrogels were synthesized from the photopolymerization of acrylic acid in the presence of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO-F127) triblock copolymer and poly (vinyl alcohol) (PVA). To explore the ability of these hydrogels for specific applications such as cartilage replacement we used a DLP 3D printer. The characterization of the physico-chemical properties of the hydrogels included swelling, mechanical tensile and compression tests and morphology by scanning electron microscopy. The hydrogels were charged with the NO donor S-nitrosoglutathione (GSNO) and the kinetics of real-time NO release under physiological conditions was characterized by chemiluminescence.

https://doi.org/10.20396/revpibic2720192278
PDF

Referências

Michele C. Jen, M. C.; Serrano, M. C.;van Lith, R.; Ameer, G. A. Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. Advanced Functional Materials. 2012, 22(2), 239-260.

A. S. Hoffman. Hydrogel for biomedical applications. Adv Drug Deliv Rev, 2002, 43, 3-12.

Oliveira MG. S de. Nitrosothiols as Platforms for Topical Nitric Oxide Delivery. Basic & Clinical Pharmacology & Toxicology. 2016, 119, 49-56.

Todos os trabalhos são de acesso livre, sendo que a detenção dos direitos concedidos aos trabalhos são de propriedade da Revista dos Trabalhos de Iniciação Científica da UNICAMP.

Downloads

Não há dados estatísticos.