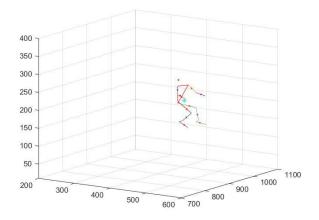
ANÁLISE CINEMÁTICA TRIDIMENSIONAL DO COMPORTAMENTO DO CENTRO DE MASSA DE ATLETAS DE SLACKLINE.

Luiz Eduardo P. de Souza*, Luciano A. Mercadante, Paulo Roberto P. Santiago, Karine J. Sarro.

Resumo

O slackline é uma modalidade esportiva que envolve a manutenção do equilíbrio sobre uma estreita fita tencionada entre dois pontos fixos. O objetivo deste estudo foi analisar o comportamento do centro de massa de atletas de slackiline. Atletas foram filmados durante um campeonato de trickline e a posição do centro de massa em função do tempo foi calculada. A descrição do deslocamento do centro de massa trouxe informações sobre a qualidade da execução da manobra.

Palavras-chave:


Biomecânica, esporte, desempenho.

Introdução

Slackline é uma modalidade esportiva cujo objetivo é manter-se em equilíbrio sobre uma fita tensionada acima do solo. O estilo trickline é competitivo e o atleta deve fazer manobras acrobáticas sobre a fita, necessitando, portanto, de destreza além de equilíbrio. A análise cinemática do atleta pode trazer informações importantes para melhorar seu desempenho, entretanto, o único trabalho sobre o tema encontrado na literatura avaliou posturas estáticas¹. Portanto, este trabalho teve como objetivo analisar o comportamento do centro de massa de atletas de trickine durante a manobra buttbounce backflip a partir da análise cinemática tridimensional.

Resultados e Discussão

Quatro atletas foram filmados por 6 câmeras durante um campeonato de trickline. A partir das imagens, foram obtidas as coordenadas tridimensionais dos ombros, colovelos, punhos, quadris, joelhos, tornozelos, pés e cabeça e foi, então, calculada a posição do centro de massa em função do tempo.

Figura 1. Stick figura obtida a partir das coordenadas tridimensionais das articulações, mostrando o centro de massa de cada segmento (ponto vermelho) e o centro de massa total do corpo (asterisco azul). O instante representado na figura corresponde ao início da manobra.

Tabela 1. Posição do centro de massa (média±desvio padrão) e deslocamento máximo (range) nas direções anteroposterior (X), lateral (Y) e vertical (Z).

Atleta	Х	Υ	Z	Range X	Range Y	Range Z
1	397.70 (±47.54)	950.43 (±10.47)	200.90 (±69.50)	131.96	32.31	198.81
2	357.56 (±48.07)	954.34 (±11.32)	229.92 (±87.45)	135.11	32.29	249.21
3	425.58 (±45.12)	941.16 (±11.35)	201.12 (±79.93)	123.14	36.37	228.99
4	361.48 (±42.24)	947.10 (±7.96)	206.55 (±81.06)	116.18	28.29	237.72

Feitas as análises, foi possível constatar que o centro de massa dos sujeitos se localizou na região medial e inferior do tronco, com pequenos deslocamentos no eixo Y (lateral), no qual será importante para a execução completa da manobra sem que o sujeito caia da fita e consequente melhora do desempenho. O deslocamento inicial em Z (vertical) está relacionado ao quanto de energia da fita o atleta acumula para posterior realização da manobra, uma vez que quanto maior for esse deslocamento, relacionado a um deslocamento otimizado com o eixo X (anteroposterior), irá resultar num maior alcance da altura da manobra e consequentemente maior tempo e possibilidade de uma melhor execução da manobra.

Conclusões

As análises feitas podem colobarar com os atletas no reconhecimento mais preciso de possíveis erros e ajustes.

Agradecimentos

Agradecemos os atletas, a organização do evento e o CNPq.

¹ Mendes, A. M.; Gomes, D. A.; Bello, M. Rev. Corpoconsciência. 2015, 18,