

Continuous Flow Synthesis of Terpene-Based Monomers for Green Polymers Production.

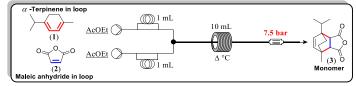
Lucas P. Fernandes*, Renan Galaverna, Gustavo R. Gomes and Julio C. Pastre.

Abstract

The synthesis of monomers for the production of novel green polymers was evaluated in continuous flow conditions using terpenes as dienes and maleic anhydride as dienophile for the [4+2] Diels-Alder cycloaddition reaction. The hydrogenation reaction was also evaluated to prevent the retro-Diels-Alder and to expand the reactional scope by producing adducts with distinct characteristics of structures and reactivity. Fourteen different monomers were obtained in good yields in flow regime.

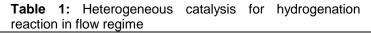
Key words:

Flow chemistry, Diels-Alder, Terpenes


Introduction

Polymeric materials that incorporate renewable bio-based building blocks such as terpenes, provide a necessary alternative to our historical dependence on petroleumbased polymers. In that way, different terpenes such as α and β -pinene, myrcene, phellandrene, limonene, terpinene have been applied to produce bio-based polymers.¹

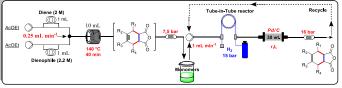
In this study, continuous flow processes were applied to the production of monomers for green polymer synthesis using terpenes as dienes and maleic anhydride as dienophile in a [4+2] Diels-Alder reaction.


Results and Discussion

The synthesis of monomers started with the evaluation and optimization of the cycloaddition reaction using α -terpinene as diene (scheme 1), followed by the hydrogenation reaction (table 1).

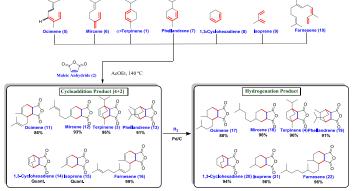
Scheme 1: Diels-Alder reaction using α -terpinene as diene.

Total conversion (99%) was achieved using 0.25 mL min⁻¹ at 140°C in 40 min.



(3) Monome in low	AcOEt	hbe-in-Tube reactor	1 mL Pd/C 16 b 5 wt. Δ°C 4 min	ar (4) 0
Entry	Temperature (°C)	Time (min)	H₂ (bar)	Conversion ^[b] (%)
1 [c]	r.t.	4	5	2
2 ^[c]	r.t.	4	10	5
3 [c]	r.t.	4	15	10
4[c]	70	4	15	4
5 ^[d]	r.t.	330	15	100

^[a] Column details: Glass column with 750 mg of Pd/C (5% wt.) ^[b] Conversion was determined by GC-MS. ^[c] The reaction was conducted in a single-pass experiment. ^[d] It was recycled through the system.


The **scheme 2** show the synthesis in two steps made in sequence on continuous flow using a tube-in-tube reactor.

For total conversion of monomer **3**, a recycle (entry **5**) was necessary and Pd/C 5% wt. was replaced by 30% wt. to decrease the reaction time (80 min).

Scheme 2: Sequential Diels-Alder reaction and heterogeneous hydrogenation in flow regime.

With these results, the scope was expanded using six different terpenes as shown in the **scheme 3.** 1,3-Cyclohexadiene was used as a control in the process.

Scheme 3: Scope using different terpenes as dienes.

Conclusions

The strategy adopted here allowed the synthesis of several monomers in good yields (up to 85%) and total conversion for terpenes in only 40 min for the Diels-Alder reaction. The flow process offers unique possibility to the scale-up of monomers synthesis without the need to increase the size of the coil reactor as it is requested in the batch process. Work is now in progress to produce novel bio-based polymers with these terpene-based monomers using polyols and polyamines as chain propagation agents.

Acknowledgement

The authors gratefully acknowledge financial support from FAPESP, CNPq CAPES and FAEPEX.

Perry, A. W.; Fuxiang, C.; Chuanbing, T. Macromol. Rapid Commun. 2013, 34, 8-37.