

Franciane Pereira da Silva*, Freddy Armando Franco Grijalba (Faculdade de Engenharia Mecânica - UNICAMP)

Resumo

O objetivo deste trabalho é identificar como bobinas leitoras com diferentes números de espiras influenciam na resposta do Ruído Magnético de Barkhausen (RMB) a tensões aplicadas em uma amostra de aco em flexão. Foram confeccionadas seis bobinas e mediu-se o ruído em 21 níveis de tensão para cada uma. Os resultados mostraram que a sensibilidade do RMB varia pouco com o número de espiras, porém, um número baixo gera medidas menos precisas.

Palavras-chave:

Ensaio não destrutivo, Ruído Barkhausen, Medição de tensões.

Introdução

O sensor utilizado é composto por um eletroímã e uma bobina leitora. Os sinais de RMB podem correlacionados a alterações no material como mudanças na microestrutura, deformação plástica e tensões. O uso em medição de tensões vem sendo estudado por alguns pesquisadores1, 2, bem como a influência da bobina leitora^{3, 4}, mas não atrelada a aplicação de tensões.

Resultados e Discussão

Foi feito um projeto da máquina e da amostra dimensionada de modo a apresentar o mesmo nível de tensão em toda a superfície, como mostrado na figura 1.

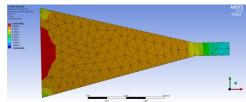


Figura 1. Distribuição de tensão na superfície superior da amostra.

O experimento consiste na aplicação de uma carga na extremidade livre da amostra, gerando tensões ao longo da superfície (ver figura 2). Para monitorar a tensão foram usados extensômetros e o RMB simultaneamente.

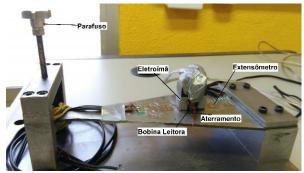


Figura 2. Montagem experimental incluindo máquina, amostra e sensor.

As figuras 4-a e 4-b mostram, para cada bobina, a resposta em frequência e o espectro do RMB no ponto de maior tensão, respectivamente.

Os resultados das medições realizadas com 21 níveis de tensão encontram-se na figura 5.

A tabela 1 contém valores obtidos da regressão linear dos dados normalizados para tensões de tração.

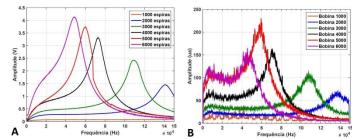


Figura 4. Resposta em frequência (A) e espectro do RMB a 190MPa (B)

Figura 5. RMB x Tensão (A) e curva RMB x Tensão normalizada (B).

Tabela 1. Coeficientes da equação da reta (y = ax + b) e índice de correlação (R2) para as medidas em tensão de tração.

	1000	2000	3000	4000	5000	6000
Bobina	espiras	espiras	espiras	espiras	espiras	espiras
а	0,0009	0,0012	0,0011	0,0011	0,0010	0,0010
b	1,0116	0,9984	0,9928	0,9926	0,9957	1,0068
R ²	0,9862	0,9973	0,9931	0,9927	0,9957	0,9893

Conclusões

De modo geral, não há uma vantagem muito relevante em usar bobinas com elevados números de espiras. No entanto, quando utilizadas bobinas com poucas voltas, a amplitude do sinal fica muito baixa ocasionando maior influência de interferências eletromagnéticas, o que explica o fato de a bobina de 1000 voltas apresentar pouca sensibilidade em tensões de compressão.

Agradecimentos

Bolsa IC CNPq nº 137091/2017-6 e Projeto Faepex nº 519.292.

- ¹ Grijalba, F. A. F. Desenvolvimento de ensaio não destrutivo baseado no ruído magnético de barkhausen para caracterização de tensões elásticas e deformações plásticas em aços. 2010.
- ² Moorthy, V. Important Factors Influencing the Magnetic Barkhausen Noise Profile. **2016**.
- ³ Capó-Sánchez, J. e Padovese, L. Magnetic Barkhausen noise measurement by resonant coil method 2009
- ⁴ Vashista, M. e Moorthy, V. Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile. 2013. Franciane Pereira da Silva: franciane73@gmail.com Prof. Dr. Freddy A. Franco Grijalba: frefranco@fem.unicamp.br