Tratamento de efluente sanitário biotratado por processos avançados multi-barreira.

Eric B. Barbosa*, Renato F. Dantas.

Resumo

O atual cenário frente a necessidade de obtenção de água potável faz com que esse bem escasso, se torne cada vez mais procurado e valioso. O presente trabalho tem como objetivo o estudo e a otimização de sistema de tratamento multibarreiras utilizando membranas de polietileno, carvão ativado, ultrafiltração e ozônio. foi usado o efluente da Faculdade de Técnologia (FT-UNICAMP) e após todos as etapas de tratamento o efluente tinha características necessárias para ser reutilizado. Em especial a quantidade de materia orgânica, bactérias e absorbência foram eliminados em torno de 95%

Palavras-chave:

Carvão ativado, ultrafiltração, ozonização, reuso de efluente.

Introdução

A escassez de recursos hídricos nos dias de hoje, bem como a necessidade cada vez maior de sua abundância, faz com que tecnologias capazes de purificar a água sejam cada vez mais demandadas para a obtenção desse bem.

O sistema de filtração por multe barreiras já é utilizado em países desenvolvidos, como na Califórnia (USA), sendo a melhor alternativa para tratamento de efluente para reuso por garantir que a qualidade firmada por lei seja atingida antes mesmo do término do processo. [1]

Este projeto consiste em uma simulação, em escala laboratorial, de um sistema de tratamento multi-barreira com objetivo de otimizar os processos individualmente e estudar o potencial de remoção de matéria orgânica, bactérias (*E. coli*) e absorbância (UV254).

Resultados e Discussão

O projeto foi desenvolvido em batelada para que se pudesse analisar cada etapa, a Figura 1 ilustra os equipamentos utilizados para cada processo de filtração.

Figura 1. Protótipo do sistema. A) Bomba, 220v. B) Membrana de polietileno. C) Ozonizador. D) Membrana Carvão ativado. E) Membrana de Ultrafiltração.

Utilizando o efluente da Faculdade de Tecnologia (FT-UNICAMP), para um volume de 1L por amostra, submetendo-a ao sistema de filtração, onde a primeira barreira, a membrana de polipropileno de 5 micra, que simula o filtro de areia em escala real, essa etapa é utilizada para a remoção de partículas grosseiras, evitando assim riscos que poderiam comprometer a todo

o sistema, como o entupimento das membranas. Seguindo para segunda barreira, que é a parte central do funcionamento e objetivo do projeto, trata-se da combinação do filtro de carvão ativado seguido de ozonização e carvão ativado, essa combinação com a quantidade correta de ozônio é capaz de potencializar ainda mais a purificação da água, como mostra a Figura 2

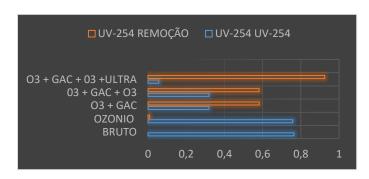


Figura 2. Gráfico – Remoção de UV245.

Conclusões

Com o desenvolvimento do sistema em escala laboratorial, pode-se analisar a eficiência na remoção de matéria orgânica (DQO), bem como a concentração de ozônio para a potencialização do processo, que foi de (), constatando que o processo é eficiente na remoção de matéria orgânica e seus resultados são satisfatórios frente aos objetivos propostos. Os resultados obtidos nesse trabalho são importantes para que se tenha uma base para mudança de escala, que é objetivo de futuras pesquisas do laboratório, visando a criação de uma estação de tratamento de efluente, na FT-UNICAMP, que seja capaz de tratar o efluente e reutilizar de forma inteligente e de maneira inovadora servindo de exemplo para todos os campi da UNICAMP e possivelmente de outras universidades.

Agradecimentos

Ao CNPq pelo apoio financeiro.

[1] Ciabattia, F. Cesarob, L. Farallia, E. Fatarellaa, F. Tognottia. 2009, 451, 459.