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In this work, the student learned to reformulate classical results of mechanics in terms of differential geometry, the
mathematical framework of modern physics. This will allow the undergraduate student learn the tool to tackle higher

level physics not covered in undergraduate courses.
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Introduction
Differential geometry is used in many areas of physics,
such as general relativity, gauge theories, and even
classical mechanics. In this work we use this to study the
symplectic formulation of classical mechanics.

Results and Discussion
Physical models are often formulated in terms of
differential geometry. The idea of curved spaces is
generalized by locally euclidean spaces, called
manifolds:

Definition: M is said to be a manifold if it is a Hausdorff,
second countable, topological space and for all peM
there's a neighborhood U with a homeomaorphism
i,:U~R". The colection of all such neighborhoods and
homeomorphisms is called an atlas.

M is a smooth manifold if its atlas is C* compatible.

Vector and co-vector fields are generalized by smooth
sections of the tangent and cotangent bundles,
respectively:

Definition: The fangent bundle TM of M is the set of
derivations of local observable. For each peM, the tangent
space T,M of tangent vectors over p is a vector space. By
considering each dual space T,M*, the cofangent bundle
T*M is the disjoint union of each TM*.

We also have the idea of the flow of a vector field:

Theorem: Let X be a smooth vector field over M. The
differential equation & m{t,y}f&tZXW.yl admits a
local solution for every yeM, called the flow of X.

In Lagrangian mechanics, the trajectory of particles are

i
the extremes of the action functional _L Ll[q,::'],t:ldt

and so satisfy the Euler-Lagrange equation:
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The Hamiltonian formalism is derived by the following
theorem:

Theorem: The Euler-Lagrange equation are equivalent
to Hamifton equations:

q‘:ﬂ and ;'Ji:—a—H; where p=

op; dq q
H(p,q.,t)=pg—L(q.q,t) is the Legendre
transform of the Lagrangian.
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However, by considering the cotangent bundle T*M as
the system's phase space and the symplectic Liouville 2-

. .
Z{_d(u:dqthdp]- ., we have a natural

isomorphism between co-vector and vector fields over
T*M, the Hamilton equations appear naturally:

form

Definition: The Hamiltonian field Xy of an observable H
is the vector field such that dH{X)=w(Xu X) for all vector
fields X.

Theorem: The flow of the Hamiltonian field of any time-
independent observable H satisfies the Hamilton
equations.

In this context, the Hamiltonian is always a conserved
quantity. With the Poisson bracket, we can calculate how
any observable of the phase space evolves in this motion
by
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We see that the symplectic structure of the cotangent
bundle is a very natural framework for studying classical
mechanics.

Conclusions
By using the language of differential geometry, we were
able to reformulate Hamiltonian mechanics very naturally
on the symplectic structure of the phase space.
Equiped with this technique, the student will follow up by
studying general relativity and gauge theories, for which
differential geometry is an essential tool.
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