

CARACTERIZAÇÃO E ESTUDO DAS ETAPAS DE PRODUÇÃO E VIDA DE PRATELEIRA DE **KOMBUCHÁS**

Vitória Ribaldo Ribeiro*, Ana Valéria Ulhano Braga, Kazumi Kawasaki Ramos, Flávio Luís Schmidt.

Resumo

O Kombuchá vem se tornando uma bebida popular em diversos países devido ao seu potencial probiótico, atrelado à preocupação atual da sociedade com a qualidade nutricional dos alimentos. No entanto, no Brasil, o Kombuchá ainda é considerado um produto novo, produzido por pequenos produtores ou de forma caseira. Esse trabalho propõe a caracterização e o estudo de 3 kombuchás dos sabores: melissa com capim limão, abacaxi e gengibre; aroeira com maçã verde e menta; e hibisco com frutas vermelhas, em diferentes etapas de produção e fermentação. A caracterização foi realizada através das análises de acidez, pH, sólidos solúveis, compostos fenólicos totais, análises microbiológicas tradicionais e por metagenoma, além de uma análise sensorial para avaliar a aceitação do consumidor.

Palavras-chave: Kombuchá, físico química, fermentação

Introdução

No Brasil, ainda são escassos os estudos a respeito das variáveis na produção do Kombuchá, sendo, desta forma, fundamental o estudo e a análise da composição química do produto que varia ao longo da fermentação, além do tipo de microrganismo presente e as características do substrato escolhido (tipo de chá), sua concentração e a quantidade de açúcar presente (HRNJEZ et al., 2014).

Este projeto de pesquisa baseia-se no estudo das etapas de produção e vida de prateleira de kombuchás nos sabores melissa, hibisco e aroeira, coletados durante a primeira e segunda fermentações.

Resultados e Discussão

A Tabela 1 e 2 mostram respectivamente os resultados das análises físico-químicas e microbiológicas dos kombuchás.

Tabela 1. pH, Acidez, Brix e compostos fenólicos totais no início e final da fermentação dos Kombuchás

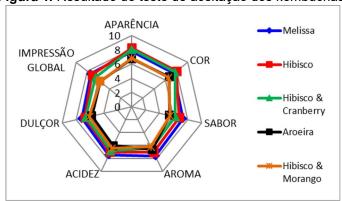

Amostra		рН	Acidez (vol. NaOH 0,1N/100ml amostra)	Sólidos solúveis (°Brix)	Compostos fenólicos (mg ác. gálico/L)
Melissa	Inicial	$4,6 \pm 0,0$	$2,6 \pm 0,2$	$2,3 \pm 0,0$	$28,9 \pm 0,4$
	Final	$3,1 \pm 0,0$	$39,2 \pm 0,2$	1,8 ± 0,1	$49,7 \pm 0,5$
Hibisco	Inicial	$3,0 \pm 0,0$	$8,4 \pm 0,6$	2,5 ± 0,1	54,9 ± 1,2
	Final	$2,8 \pm 0,0$	$41,2 \pm 0,2$	$1,8 \pm 0,0$	$93,5 \pm 6,2$
Aroeira	Inicial	$4,1 \pm 0,0$	2.8 ± 0.6	2,4 ± 0,1	45,5 ± 0,7
	Final	$3,6 \pm 0,0$	21,0 ± 1,7	1,3 ± 0,1	$63,2 \pm 0,9$

Tabela 2. Resultado das análises microbiológicas (UFC/ml) e metagenoma dos Kombuchás

	Bactérias	Fungos	
	7,5 x 10 ⁵ UFC/ml	2,48 x 10 ⁵ UFC/ml	
Melissa	Bacillus pumilus	Saccharomyces cerevisiae Pichia kudriavzevii Lachancea fermentati	
	3,14 x 108 UFC/ml	9,18 x 10 ⁶ UFC/ml	
Aroeira	Bacillus subtilis Bacillus carboniphilus Bacillus megaterium	Pichia kudriavzevii Lachancea fermentati	
	1,08 x 10 ⁶ UFC/ml	6,50 x 10 ⁵ UFC/ml	
Hibisco	Bacillys humi	Pichia kudriavzevii Brettanomyces bruxelensis	

A análise sensorial foi realizada com consumidores préselecionados através da aceitação das 3 amostras produzidas no laboratório, além de 2 outras amostras comerciais com características sensoriais diferentes: sabores morango com hibisco; e hibisco com cranberry (Figura 1).

Figura 1. Resultado do teste de aceitação dos kombuchás

Conclusões

- Como esperado, foi possível perceber queda de pH e sólidos solúveis durante a fermentação de kombuchá, além do aumento da acidez e aumento dos compostos
- A alta contagem de microrganismos é esperada por ser uma bebida fermentada e que não passa por tratamento térmico, e os microrganismos identificados não são patógenos.
- Os kombuchás de melissa, hibisco e hibisco com cranberry apresentaram maior aceitação do que os demais produtos.
- O trabalho despertou interesse para futuros estudos, tendo em vista que inúmeras variáveis podem influenciar na característica da bebida, assim como na aceitação do consumidor conforme análise sensorial.

Agradecimentos

A empresa de kombuchá KOM, de Atibaia - SP, pela coleta e doação de kombuchás. Laboratório de Frutas e Hortaliças pela infraestrutura para a realização da pesquisa.

HRNJEZ, D.; VASTAG, Z.; MILANOVIC, S.; VUKIC, V.; ILIC'IC', M.; POPOVIC', LJ.; KANURIC', K. The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. Journal of Functional Foods, v. 10, p. 271–279, 2014.