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Abstract 

This project addresses computational methods for obtaining singular values and singular vectors of matrices, focusing 

on the large-scale setting. Strategies of data compression based on the statistical technique of principal components 

analysis are our main motivation. At first, Lanczos method, which is a matrix-free strategy to determine a set of 

eigenpairs of symmetric matrices, was studied and implemented. Then, such fundamentals methods were used to obtain 

a partial singular value decomposition of data matrices, in order to explore practical problems by means of the principal 

components analysis. In particular, experimental results were perfomed in image compression. 
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Introduction 
Singular Value Decomposition (SVD) is an 

important tool for matrix analysis. Its efficient 
determination in large scale problems is a relevant and 
current research topic. According to [1], SVD sorts 
information contained in matrices so that its main content 
becomes visible. Principal Component Analysis (PCA) is 
a widely applied multivariate technique which is strongly 
based on this propriety and can be used for data 
compression. As theoretic foundation for this project, 
Lanczos Method and its limitations, such as the 
phenomenon of “ghost eigenvalues” [2], were studied for 
obtaining extreme eigenpairs of symmetric matrices. 
Lanczos bidiagonalization was studied and implemented 
for obtaining partial singular value decompositions. 
 

Results and Discussion 
Let A be an m x n rank r data matrix. Its SVD is   

A = UƩVt, where U is an m x m orthogonal matrix, V is an 
n x n orthogonal matrix and Ʃ is an m x n diagonal matrix, 
with ơ1≥ ơ2≥…≥ ơn known as singular values; or                         
A = ∑ơiuivi

t, in which each term of the sum is a rank one 
matrix. The products zi = ơiui are called principal 
components and are ordered by highest variance. In 
terms of linear algebra, principal components analysis is 
based on the possibility of truncating this sum after k 
terms to obtain the best rank k approximation for A, 
according to SVD proprieties. In terms of image 
compressing, choosing an optimal k number requires 
dealing with image quality measurements, such as Peak 
Signal Noise Ratio (PSNR) and Structural Similarity 
Based Image Quality Assessment (SSIM) - see [3].  

When the process was applied to the widely used 
picture of peppers, with resolution 384 x 512 and rank 
384, the variance of the principal components decreased 
fast, as shown in Image 1.  

 
Image 1. Variance of Principal Components. 

The approximations obtained with 10, 50, 80 and 150 

principal components are presented in Image 2 and 

corresponding measures in Chart 1.  
 

 
Image 2. Approximations built with 10, 50, 80 and 150 
principal components. 
 
Chart 1. Image quality measurements for image 
approximations. 

Rank PSNR SSIM Compression Factor 

10 -22.92 0.3104 4.57% 

50 -13.86 0.6024 22.83% 

80 -9.2594 0.7295 36.54% 

150 -1.9938 0.8808 68.51% 

 

Conclusions 
Experimental tests performed in different sets of 

images revealed that significant compression rates can 
be achieved when principal components variances 
decrease rapidly. If this doesn’t occur, storage space 
needed to obtain a good approach to the original data 
might be similar or ever larger, since standard deviations 
and means of the variables also need to be stored. 
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