XXVI Congresso de Iniciação Científica Unicamp

17 a 19 de outubro

Campinas | Brasil

Aproveitamento de resíduos da agroindústria do frango para produção simultânea de enzimas hidrolíticas de interesse para a indústria de alimentos e nutrição animal.

Ana Karoliny Santos de Souza*, Ruann Janser Soares de Castro.

Resumo

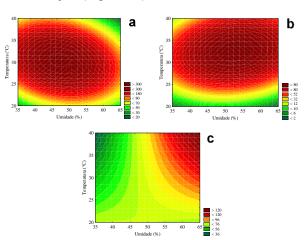
O presente trabalho visou estudar a produção simultânea de enzimas hidrolíticas por Aspergillus niger utilizando farinha de penas de frango como substrato em cultivo semissólido. A avaliação dos efeitos de parâmetros de cultivo do microorganismo na produção das enzimas protease, lipase e fitase foi realizada empregando-se a técnica de planejamento experimental. Os resultados obtidos mostraram que a condução do processo fermentativo utilizando umidade inicial do meio de cultivo de 50%, temperatura de incubação de 30°C e suplementação da farinha de penas de frango com farelo de trigo na concentração de 15%, resultou nas maiores produções de protease e lipase após 48h e valores satisfatórios de atividade de fitase após 72h de fermentação, sendo estas as condições de cultivo selecionadas para a produção simultânea das três enzimas.

Palavras-chave: Aspergillus niger, fermentação semissólida, enzimas hidrolíticas.

Introdução

As enzimas de origem microbiana constituem-se importantes insumos para a indústria, apresentando diversas aplicações na área de alimentos e na nutrição animal. Assim, o estudo de processos que envolvam a produção destas enzimas apresenta grande relevância em diversas áreas de pesquisa. Fungos filamentosos do gênero Aspergillus, possuem grande histórico de uso industrial e são capazes de produzir diversos grupos de enzimas com diferentes propriedades bioquímicas, como proteases, lipases e fitases. A produção de enzimas hidrolíticas por micro-organismos pode ser realizada por fermentação semissólida, processo este que vem ganhando importante notoriedade pela possibilidade do aproveitamento de resíduos, os quais são substratos de baixo custo. Nesse contexto, o presente trabalho buscou estudar a produção simultânea de enzimas hidrolíticas aplicáveis à indústria de alimentos e nutrição animal por meio da fermentação semissólida utilizando o fungo filamentoso A. niger e farinha de penas de frango como substrato.

Resultados e Discussão


Os efeitos das variáveis independentes especificadas na **Tabela 1** foram avaliados utilizando um delineamento experimental do tipo DCCR contendo 17 ensaios.

Dos parâmetros avaliados, a umidade e a temperatura de incubação demonstraram os efeitos mais importantes e significativos sobre a produção das enzimas protease, lipase e fitase.

Tabela 1. Variáveis independentes e níveis do planejamento experimental DCCR para determinação das condições de cultivo de *A. niger* LBA02 em farinha de penas de frango e produção de enzimas hidrolíticas.

Variáveis independentes	Níveis				
	-1,68	-1,00	0,00	+1,00	+1,68
Umidade (%)	35	41	50	59	65
Temperatura (°C)	20	24	30	36	40
Farelo de trigo (%)	5	9	15	21	25

Os maiores valores de atividade enzimática de protease (>300 U/g) e lipase (>80 U/g) foram detectados na região dos pontos centrais do delineamento experimental após 48h de fermentação (Figuras 1a e 1b). Para fitase, as maiores atividades (>120 U/g) foram detectadas em condições de cultivo com umidade e temperatura nos níveis superiores do delineamento experimental após 72h de fermentação (Figura 1c).

Figura 1. Curvas de contorno para a produção de protease (a) e lipase (b) após 48h de fermentação e fitase (c) após 72h de fermentação semissólida por *A. niger* LBA02 utilizando farinha de penas de frango como substrato.

Conclusões

Os resultados mostraram que a farinha de penas de frango apresentou grande viabilidade de uso como meio de cultivo semissólido para a produção de enzimas hidrolíticas por *A. niger* LBA02. A condução do processo fermentativo nas condições dos pontos centrais do delineamento experimental DCCR foi selecionada como a mais adequada para obtenção simultânea das enzimas protease, lipase e fitase.

Agradecimentos

Ao Programa de Iniciação Científica Voluntária da UNICAMP pela oportunidade de desenvolvimento do projeto.

