XXVI Congresso de Iniciação Científica Unicamp 17 a 19 de outubro Campinas Brasil

Substâncias biologicamente ativas de grãos de mostarda preta e sua relação com os parâmetros de germinação: uma avaliação sobre as propriedades antioxidantes.

Marina Hermenegildo Hilkner*, Gabriela Boscariol Rasera, Ruann Janser Soares de Castro.

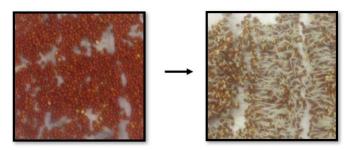
Resumo

A germinação de grãos é um processo eficiente, natural, barato e que altera o perfil de compostos dos brotos de acordo com as condições ambientais em que o grão é germinado. Assim, a influência dos parâmetros de germinação (tempo, temperatura e luminosidade) no teor de compostos fenólicos totais e atividade antioxidante (ABTS e DPPH) dos extratos obtidos a partir de mostarda preta (Brasicca nigra) foi avaliada. As condições de germinação selecionadas e que resultaram em maiores valores de compostos com propriedades antioxidantes foram: a) 48h, 25°C, luz + escuro; b) 72h, 25°C, luz e c) 72h, 30°C, luz + escuro. Os valores máximos de atividade antioxidante obtidos foram 71,8 e 36,95 μmoL TE/g para os métodos ABTS e DPPH, respectivamente.

Palavras-chave: mostarda, germinação, antioxidantes.

Introdução

A semente de mostarda é um alimento barato, de fácil acesso e pode ser utilizada como suplemento alimentar, além de apresentar diversos compostos biologicamente ativos com potencial para diminuição da glicemia, redução do acúmulo de lipídeos e de colesterol além de propriedades antioxidantes, anti-inflamatórias e anticancerígenas.


Uma forma de melhorar as propriedades funcionais e biológicas de grãos é submetê-los ao processo de germinação. Nesse sentido, torna-se importante avaliar o efeito das condições de germinação nos compostos bioativos, objetivo deste trabalho.

Resultados e Discussão

A Figura 1 lustra o processo de germinação dos grãos de mostarda preta. Os resultados obtidos para compostos fenólicos totais (FT) e atividades antioxidantes pelos métodos ABTS e DPPH são apresentados na Tabela 1. Primeiramente, pode-se observar que os extratos obtidos a partir das amostras de mostarda não germinadas e embebidas não diferiram estatisticamente entre si em relação aos teores de compostos fenólicos totais e atividade antioxidante. Desta forma, pode-se inferir que não há alteração significativa dos compostos fenólicos durante a entrada de água no grão e não há perdas deste para a água.

Para a escolha da condição mais adequada de germinação, visando a obtenção de maior quantidade de compostos fenólicos e atividade antioxidante, foram analisadas as diferenças entre os extratos de mostarda não germinada e germinada em cada condição executada, além de considerar a condições de execução menos dispendiosa (menor tempo de germinação, por exemplo), visto que diversos ensaios não apresentaram diferença estatística significativa (p < 0.05).

Assim, visto que FT variou de 8,82 a 16,6 mg de ácido gálico equivalente por g de amostra (AGE/g), ABTS de 41,07 a 71,8 µmol de Trolox equivalente por g de amostra (µmol TE/g) e DPPH de 16,37 a 36,95 µmol TE/g, as condições selecionadas foram: a) ensaio 10 (48h, 25°C, luz + escuro); b) ensaio 15 (72h, 25°C, luz) e c) ensaio 19 (72h, 30°C, luz + escuro).

Figura 1. Amostra de mostarda preta não germinada e germinada após 48h, temperatura de incubação de 25°C com períodos de luz/escuro alternados.

Tabela 1. Condições de germinação e resultados para FT e atividade antioxidante (ABTS e DPPH) para os extratos obtidos a partir dos grãos de mostarda preta.

Ensaios	Tempo de germinação (h)	Temperatura (°C)	Fotoperíodo	FT	ABTS	DPPH
				(mgAGE/g)	(µmol TE/g)	(µmol TE/g)
1 (não germinada)	0	Ambiente	-	8,82f	57,36 ^{ede}	18,03lm
2 (embebida)			-	9,24f	56,95dc	17,92lm
3	24	25	Luz	9,58f	51,91ef	23,68hij
4			Luz + escuro	11,69dc	64,21bc	27,19fg
5			Escuro	10,06ef	50,99ef	23,48 ^{ij}
6		30	Luz	9,66°f	48,15fg	24,62hi
7			Luz + escuro	11,81dc	63,19bcd	31,2ed
8			Escuro	11,68dc	51,37ef	29,41 def
9	48	25	Luz	11,53dc	67,74ab	29,32def
10			Luz + escuro	12,72 ^{cd}	66,41ab	32,56bc
11			Escuro	9,84ef	43,51gh	26,11gh
12		30	Luz	12,4 ^{cd}	71,8ª	34,14 ^b
13			Luz + escuro	13,33 ^{cd}	41,07h	19,4kl
14			Escuro	9,31f	52,11ef	28,51efg
15	72	25	Luz	16,6ª	56,12°	36,95a
16			Luz + escuro	12,28cd	71,73ª	16,37 ^m
17			Escuro	13,99bc	56,75de	27,22efg
18		30	Luz	9,27 ^f	56,28de	29,74de
19			Luz + escuro	16,05ab	68,65ab	$21,38^{jk}$
20			Escuro	11,48de	67,82ab	33,08bc

A condição "luz + escuro" corresponde a 12 horas de luz e 12 de horas de escuro por dia. Letras iguais representam resultados estatisticamente não significativos (p < 0.05) na mesma coluna.

Conclusões

Os resultados obtidos permitiram concluir que a germinação da semente de mostarda preta mostrou-se uma alternativa viável para aumentar o teor de compostos fenólicos e propriedades antioxidantes, além de apresentar-se um processo relativamente simples de ser executado. No entanto, análises quantitativas e descritivas, como a identificação do perfil de compostos fenólicos, são indicadas para maior compreensão das transformações após o processo de germinação.

