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Nuclear energy is a typical example of the application of the equivalence between matter and energy. In
nuclear fission and fusion reactions, when the total mass of the products is lower than that of the reactants,
energy is released according to E =mc2. This energy is released via photons, as explained by the Planck relation,
E = h f , which is based on undeniable experimental evidence. Much has been discussed about conversion of
energy to matter, but the nature of this process remains mysterious. This paper presents a theoretical study that
shows that a system possessing electromagnetic energy has inertia corresponding to the relativistic equivalent
(mass) on the basis of its momentum and the Doppler effect. When this system undergoes translation, its space
energy changes. This phenomenon follows a wave standard similar to that observed one for free particles.

I. INTRODUCTION

The equivalence between matter and energy, E = mc2, estab-
lished by Einstein, explains how energy E can be obtained
at the expense of mass m, for example, during the fission of
heavy nuclei or fusion of light atoms, where c is the speed of
light. The relation also explains the origin of nuclear binding
energy—it is the energy equivalent of the mass defect between
the mass of an atomic nucleus and the sum of the masses of
its constituents. Today, mass-to-energy equivalence is an inte-
gral feature in understanding nuclear reactions. For massless
particles such as photons, which can be absorbed or emitted
during these reactions causing a corresponding increase or de-
crease in inertia, respectively, the Planck relation, E = h f , is
observed, where h is Planck’s constant and f is the frequency.

Despite the fact that the equivalence between matter and
energy is well defined, the conversion process is still unclear.
Another issue is the uncertainty regarding the origin of inertia
or of matter itself [1]. Under these circumstances, it appears
appropriate to conduct a study of the energy retained in the
stationary state by a specific system. Here, first, an argument
is developed to determine the inertia for electromagnetic en-
ergy retained as a stationary wave. Then, the motion state for
the same system is established through wave analysis. This is
accomplished using well-established principles [2, 3].

In classical mechanics, the mass of a material particle is
considered to be equivalent to its inertia, i.e., the difficulty
in changing its state of motion. The mass m and velocity v
determine the momentum p of the particle, as p = mv. For
electromagnetic waves, momentum p = E/c. In microscopic
terms, a wave is associated with every matter particle, and its
momentum is established as |p|= h/λ .

The system considered in this study is a mirror box con-
taining, without any loss of energy, an electromagnetic wave
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of energy E. For simplicity, this box is assumed to be one-
dimensional and correspondingly having a single axis.

II. INERTIA ATTRIBUTED TO ENERGY

Let us consider a system where two mirrors are placed facing
each other at a distance d, and an electromagnetic wave is
set up between these mirrors. The system is at rest and the
stationary energy E is distributed uniformly over d in both
the directions. In this case, there exist two waves with energy
E/2: one with momentum p+ propagating in one direction
and the other with momentum p− propagating in the opposite
direction. Therefore,

p+ =
E
2c

and p− =− E
2c

(1)

The resultant momentum is given by

p = p++ p− = 0

Let Ec be the energy in each cycle of the electromag-
netic wave. Then, Ec = ρxλ , where λ is the wavelength and
ρx=E/(2d) is the linear density of energy in each propagation
direction.Thus, Ec = Eλ/(2d) and as λ = c/ f , we get

E =
2Ecd

λ
= 2

Ecd
c

f (2)

Next, we consider that no energy loss has occurred to define a
constant, i.e.,

ĥ =
Ecd

c
(3)

Then, Equation (2) can be expressed as

E = 2ĥ f (4)

Substituting this value for energy in Equation (1), we get

p+ = ĥ
f
c

and p− =−ĥ
f
c

(5)
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Note that when dealing with energy quantization, (E/2) =
nh f , where n is the number of identical photons, and so ĥ =
nh.

Next, consider an observer on the right side of the mirror
system, which we define as the positive direction. Then, if
this observer moves with non-relativistic velocity v in this di-
rection, there will be a frequency shift resulting in two new
frequencies, f+ for the wave propagating in the observer’s di-
rection and f− for the other. This shift can be expressed as
follows on the basis of the Doppler effect:

f± = f
(

1± v
c

)
(6)

Thus,

p′+ = ĥ
f
c

(
1+

v
c

)
and p′− =−ĥ

f
c

(
1− v

c

)
(7)

In this case, the resultant momentum is p′ = p′+ + p′−.
Thus, through substitution and simple algebraic operations,
we get

p′ =
2ĥ f
c2 v (8)

The term in the numerator in the above equation corresponds
to the energy expressed in Equation (4). Thus, by substituting
Equation (4) in the above equation, we get

p′ =
E
c2 v (9)

On comparing Equation (9) with p = mv, we conclude that
this system shows inertia equal to the mass m = E/c2, which
corresponds to Einstein’s equation, E = mc2.

III. WAVE ANALYSIS AND MOTION STATE

A. Waves in Stationary System

The energy of an electromagnetic wave is contained in electric
and magnetic fields that are perpendicular to each other. In
this study, we considered a generic plane wave ψ expressed
as follows:

ψ = Acos(kx−ωt) (10)

This function could be used to express the intensity of either
the electric or magnetic field in terms of propagation distance
x and time t. In this case, it is considered to represent the elec-
tric field, where A is the maximum amplitude and the change
in the propagation direction upon reflection of the plane wave
results in phase inversion. Then, for propagation in the posi-
tive direction, the above equation becomes

ψ
+ = Acos(k0x−ω0t) (11)

and for propagation in the negative direction, it becomes

ψ
− =−Acos((−k0)x−ω0t) (12)

The subscript “0” represents the system state, i.e., the station-
ary state of the mirror box. The distance d between the mirrors
is selected such that begins at x = 0 and 2d is an integer multi-
ple of λ0. Within the interval bounded by the reflexion points,
the overlapping of these waves is described by algebraically
adding Equations (11) and (12):

Ψ = Acos(k0x−ω0t)−Acos((−k0)x−ω0t) (13)

Using the trigonometric identity, Equation (13) can be ex-
pressed as

Ψ =−2sin(k0x)sin(−ω0t) (14)

Since k0 = 2π/λ0, the points at x = nλ0/2 behave as nodes
(zero amplitude), and between these nodes exist antinodes
whose amplitudes vary with time and have frequency f0 =
2π/ω0. Figure 1 schematically illustrates this behavior.
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Figure 1: Stationary wave present in a stationary
one-dimensional box. The amplitudes obtained from times

t = 1 to t = 6 are superimposed in this figure. Here, d = nλ/2

B. Waves in System under Translation

If the box is moved at velocity v, the frequency changes on
account of the Doppler effect to f+ in the direction of move-
ment and f− in the opposite direction, as obtained in Equation
(6). In this case, the angular speeds, wave numbers, and wave-
lengths are expressed as follows:

ω
+ = 2π f+ and k+ =

2π

λ+
= 2π f+/c (15)

ω
− = 2π f− and k− =

2π

λ−
= 2π f−/c (16)

Substituting these equations into Equation (13), we get

Ψ = Acos(k+x−ω
+t)−Acos(k−x−ω

−t) (17)
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Equation (17) can be put in product form with the variables
arranged to get

Ψ =−2A sin{(1/2)[(k++ k−)x− (ω++ω−)t)]}
× sin{(1/2)[(k+− k−)x− (ω+−ω−)t)]} (18)

The wave number k is vectorial, where the direction of k− is
opposite to that of k+. Substituting Equation (6) in the equa-
tions of ω+ and ω−, i.e., Equations (15) and (16), and then
substituting these in the above equation, we get

Ψ =−2Asin[(k0v/c)x−ω0t]sin[k0x− (ω0v/c)t] (19)

Figure 2 shows a snapshot of the wave (solid red line) result-
ing from the multiplication of two sinusoidal waves (stippled
black lines).
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Figure 2: Snapshot of wave Ψ obtained by the multiplication
of two sinusoidal waves, one with length λ1 and velocity vg

and the other with length λ2 and velocity vphase. The velocity
of the mirror box containing the wave is v.

We make a brief observation about Figure 2 using Equation
(19). The last sine term in the equation represents a wave with
frequency fg = (ω0v)/(2πc) or fg = (v/c) f0. The propaga-
tion speed vg is expressed as

vg =
ω0v/c

k0

Substituting k0 = ω0/c in the above equation, we get

vg =
ω0v/c
ω0/c

= v

Therefore, the nodes are fixed relative to the box and they are
displaced at velocity vg equal to the velocity of the box.

The other term in Equation (19), i.e., sin[(k0v/c)x−ω0t],
has frequency f0 = 2π/ω0 and wavelength λ2 such that

λ2 =
2π

k0v/c
=

2π

ω0v/c2 =
2π

2π f0v/c2 =
c

(v/c) f0

Then, substituting fg = (v/c) f0, we obtain λ2 = c/ fg. The
propagation speed vphase is given by

vphase =
ω0

k0v/c
=

c
v

c

Here, it can be observed that v→ 0⇒ vphase→ ∞.
The energy density in the electric and magnetic fields are,

respectively,

UE =
1
2

ε0E2 and UB =
1
2

1
µ0

B2

Owing to this, if the wave function in Equation (19) is
squared, the resultant term will be proportional to the en-
ergy (function of time t and position x) regardless of whether
the field is magnetic or electric. Therefore, UE(x, t) = KΨ2,
where

Ψ
2 = 4A2 sin2[(k0v/c)x−ω0t]sin2[k0x− (ω0v/c)t] (20)
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Figure 3: Effect of motion of the box containing the wave:
this is visible as density variation along the x axis in the wave

pattern with wavelength λv

Again, using the trigonometric identity, we can write Equa-
tion (20) as

Ψ
2 = 4A2(1/2){1− cos[(k02v/c)x−2ω0t]}

×(1/2){1− cos[2k0x− (ω02v/c)t]} (21)

A snapshot of Ψ2 is shown in Figure 3. It is observed that
in function of the translation movement, the energy UE along
the x axis is presented in a modulation wave standard with
wavelength λv, proceeding from the first cosine function in
Equation (21).

The wave number, kv, is expressed as a function of velocity
as below:

kv = k0
2v
c
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Then, it follows that

λv =
2π

kv
=

2π

k0

c
2v

= λ0
c

2v

λv =
c2

f02v

Using equation (8), where

p′ =
2ĥ f
c2 v

the linear momentum can be obtained as

p =
ĥ
λv

For n photons, ĥ = nh; then, p = nh/λv, which represents the
correspondence between λv and the de Broglie wavelength.

IV. CONCLUSION

This theoretical study demonstrated that a system having elec-
tromagnetic energy shows inertia corresponding to the rela-
tivistic equivalent (mass) on the basis of its momentum and
the Doppler Effect. Under translation, the same system shows
a modulation in its energy along the direction of translation.
This phenomenon corresponds to a wave standard similar to
that observed for matter particles in the Schrödinger equation
for free particles.

These results provide new perspectives in unraveling the
mysteries of nature that are described by modern theories, in
the light of old theories. The results also open up avenues for a
relationship between relativity and quantum mechanics. This
fact can be viewed as a potential research topic.
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