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A numerical solver for the homogeneous Boltzmann Equation
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In this work we present some results from a numerical solution of the homogeneous electron Boltzmann
equation (EBE) for electrons in an uniform electric field, using the classical two term expansion. This EBE
solver was specially designed to be used as part of global models for low temperature plasmas. It accounts
for oscillating fields, electron-neutral collisions and electron-electron collisions. In order to validate the EBE
solver, we compare calculated transport parameters with experimental data from electron swarm experiments in

N, and Ar.

l.  INTRODUCTION

The electron energy distribution function (EEDF) plays a key
role on the theoretical description of low temperature plasmas.
In general, it is not always possible to assume a Maxwellian
distribution and the EEDF deviates considerably from equi-
librium. In these cases, one possible approach is to calculate
the EEDF by solving the electron Boltzmann equation (EBE)
[1].

In this work, we present the results of a numerical solver
of the homogeneous electron Boltzmann equation in the two
term expansion in spherical harmonics approximation. This
solver was designed to work with any kind of gas composi-
tion, as long as a consistent set of electron-neutral collision
cross sections is given. In order to validate the EBE solver,
we compared the calculated electron mobility and character-
istic energy with experimental data from electron swarm ex-
periments in N, and Ar.

Il.  BOLTZMANN EQUATION

The isotropic component of the homogeneous EBE (f(u),
with the normalization [y f(u)\/udu = 1) can be written as a
continuity equation of the total power flux G(u), which is the
sum of the fluxes driven by the applied electric field, Gg, elas-
tic collisions with the atoms, G., and electron-electron colli-
sions, G,
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where ny is the concentration of specie s, u; is the excitation
or ionization threshold, ¢ is the cross section of the inelastic
electron collision in which the target particle is excited from
the ground to an excited state j, G}S is the cross section of the
reverse process (superelastic collision) and §; is the popula-
tion of heavy particles in state j. The electron energy u is
given in units of electronvolts. The fluxes driven by the ap-
plied electric field, Gg and elastic collisions with the atoms,

G,, are given by
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where N is the number density of heavy particles, o;, and M;
are the total momentum transfer cross section and the mass of
the neutral specie s, Ty is the gas temperature in eV and v, (u)
is the colision frequency, given by

Ve(u) = \/%NZ&MUZG’; . (4)

The energy flux due to e-e¢ interactions, G, is given by
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where InA is the Coulomb logarithm. Rotational collisions
were taken into account in the continuous approach proposed
by Frost and Phelps [2].

Equation 1 can be solved numerically by converting it into
a set of equations by finite differencing the electron energy
variable [3]. If electron-electron collisions are not taken into
account, the system reduces to a set of linear equations and
can be easily solved: otherwise, the set of non-linear equations
must be solved by an iterative procedure.

A computer code was written in MATLAB® in order to
solve this numerical problem. It takes as input all the relevant
physical parameters, such as temperature, pressure, reduced
electric field, oscillation field frequency, ionization degree,
gas composition and electron-neutral collision cross sections,
and also some numerical parameters, such as the number of
cells in the energy grid and the upper limit of integration in
energy space.
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Ill.  RESULTS AND DISCUSSION

Figures 1 and 2 compare experimental measurements and the-
oretical results for the characteristic energy and electron re-
duced mobility in N, and Ar. The reduced mobility is defined
as the quotient between the drift velocity (mean velocity), v,
and the reduced electric field, E,
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where e is the elementary charge and m, is the electron mass.
The characteristic energy is defined as the ratio between the
free diffusion coefficient, Dy, and the electron mobility
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Figure 1: Characteristic energy and electron reduced
mobility in N»: experimental [4] and theoretical values. The
set of cross sections (siglo) was extracted from LXCat
database [4].

Overall, there is an excellent agreement between the calcu-
lated values and the experimental results. However, there are
small discrepancies in the case of N2 for the lower values of
the reduced electric field. The reason of that discrepancy is the
failure of the continuous approximation to describe the effect
of rotational collisions in the lower range of reduced electric
field when the temperature is not low enough to satisfy the
assumptions made by Frost and Phelps [2]. We tested this hy-
pothesis by considering the first 25 rotational transitions on
the right-hand side of equation 1 and found good agreement
with experiment.
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Figure 2: Characteristic energy and electron reduced
mobility in Ar: experimental [4] and theoretical values. The
set of cross sections (Hayashi) was extracted from LXCat
database [4].
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